zephyr-7b-UFB-ref / README.md
weijie210's picture
Model save
daca4e7 verified
---
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: zephyr-7b-UFB-ref
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zephyr-7b-UFB-ref
This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5067
- Rewards/chosen: -1.1023
- Rewards/rejected: -2.3762
- Rewards/accuracies: 0.7098
- Rewards/margins: 1.2739
- Logps/rejected: -120.8096
- Logps/chosen: -110.8900
- Logits/rejected: -2.1865
- Logits/chosen: -2.2284
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 16
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.5598 | 0.15 | 500 | 0.6348 | -0.4646 | -1.5732 | 0.7121 | 1.1087 | -112.7802 | -104.5124 | -2.2989 | -2.3398 |
| 0.6708 | 0.3 | 1000 | 0.5807 | -1.9508 | -2.8042 | 0.6830 | 0.8534 | -125.0895 | -119.3747 | -2.2155 | -2.2623 |
| 0.5984 | 0.45 | 1500 | 0.5244 | -1.4451 | -2.6765 | 0.7188 | 1.2313 | -123.8126 | -114.3180 | -2.1383 | -2.1824 |
| 0.5508 | 0.6 | 2000 | 0.5644 | -1.7905 | -2.8869 | 0.6786 | 1.0964 | -125.9164 | -117.7717 | -2.0760 | -2.1208 |
| 0.5218 | 0.74 | 2500 | 0.5183 | -1.3228 | -2.5470 | 0.7031 | 1.2242 | -122.5180 | -113.0946 | -2.2172 | -2.2616 |
| 0.4914 | 0.89 | 3000 | 0.5079 | -1.0825 | -2.3551 | 0.7121 | 1.2725 | -120.5985 | -110.6918 | -2.2149 | -2.2567 |
### Framework versions
- Transformers 4.36.1
- Pytorch 2.0.1+cu117
- Datasets 2.16.1
- Tokenizers 0.15.0