File size: 42,968 Bytes
d0a690d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2412ed2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
---
base_model: cointegrated/LaBSE-en-ru
language:
- ru
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- negative_mse
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10975066
- loss:MSELoss
widget:
- source_sentence: Такие лодки строились, чтобы получить быстрый доступ к приходящим судам.
  sentences:
  - been nice talking to you
  - >-
    Нельзя ставить под сомнение притязания клиента, если не были предприняты
    шаги.
  - >-
    Dharangaon Railway Station serves Dharangaon in Jalgaon district in the
    Indian state of Maharashtra.
- source_sentence: >-
    Если прилагательные смягчают этнические термины, существительные могут
    сделать их жестче.
  sentences:
  - >-
    Вслед за этим последовало секретное письмо А.Б.Чубайса об изъятии у МЦР,
    переданного ему С.Н.Рерихом наследия.
  - Coaches should not give young athletes a hard time.
  - Эшкрофт хотел прослушивать сводки новостей снова и снова
- source_sentence: Земля была мягкой.
  sentences:
  - >-
    По мере того, как самообладание покидало его, сердце его все больше
    наполнялось тревогой.
  - >-
    Our borders and immigration system, including law enforcement, ought to send
    a message of welcome, tolerance, and justice to members of immigrant
    communities in the United States and in their countries of origin.
  - >-
    Начнут действовать льготные условия аренды земель, которые предназначены для
    реализации инвестиционных проектов.
- source_sentence: >-
    Что же касается рава Кука: мой рав лично знал его и много раз с теплотой
    рассказывал мне о нем как о великом каббалисте.
  sentences:
  - Вдова Эдгара Эванса, его дети и мать получили 1500 фунтов стерлингов (
  - Please do not make any changes to your address.
  - Мы уже закончили все запланированные дела!
- source_sentence: See Name section.
  sentences:
  - >-
    Ms. Packard is the voice of the female blood elf in the video game World of
    Warcraft.
  - >-
    Основным функциональным элементом, реализующим функции управления
    соединением, является абонентский терминал.
  - Yeah, people who might not be hungry.
model-index:
- name: SentenceTransformer based on cointegrated/LaBSE-en-ru
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev
      type: sts-dev
    metrics:
    - type: pearson_cosine
      value: 0.5305176535187099
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6347069834349862
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.5553415140113596
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.6389336208598283
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.5499910306125031
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.6347073809507647
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.5305176585564861
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6347078463557637
      name: Spearman Dot
    - type: pearson_max
      value: 0.5553415140113596
      name: Pearson Max
    - type: spearman_max
      value: 0.6389336208598283
      name: Spearman Max
  - task:
      type: knowledge-distillation
      name: Knowledge Distillation
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: negative_mse
      value: -0.006337030936265364
      name: Negative Mse
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.5042796836494269
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.5986471772428711
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.522744495080616
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.5983901280447074
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.522721961447153
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.5986471095414022
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.504279685613151
      name: Pearson Dot
    - type: spearman_dot
      value: 0.598648155615724
      name: Spearman Dot
    - type: pearson_max
      value: 0.522744495080616
      name: Pearson Max
    - type: spearman_max
      value: 0.598648155615724
      name: Spearman Max
---

# SentenceTransformer based on cointegrated/LaBSE-en-ru

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [cointegrated/LaBSE-en-ru](https://huggingface.co/cointegrated/LaBSE-en-ru). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [cointegrated/LaBSE-en-ru](https://huggingface.co/cointegrated/LaBSE-en-ru) <!-- at revision cf0714e606d4af551e14ad69a7929cd6b0da7f7e -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
  (3): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("whitemouse84/LaBSE-en-ru-distilled-each-third-layer")
# Run inference
sentences = [
    'See Name section.',
    'Ms. Packard is the voice of the female blood elf in the video game World of Warcraft.',
    'Yeah, people who might not be hungry.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.5305     |
| **spearman_cosine** | **0.6347** |
| pearson_manhattan   | 0.5553     |
| spearman_manhattan  | 0.6389     |
| pearson_euclidean   | 0.55       |
| spearman_euclidean  | 0.6347     |
| pearson_dot         | 0.5305     |
| spearman_dot        | 0.6347     |
| pearson_max         | 0.5553     |
| spearman_max        | 0.6389     |

#### Knowledge Distillation

* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)

| Metric           | Value       |
|:-----------------|:------------|
| **negative_mse** | **-0.0063** |

#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.5043     |
| **spearman_cosine** | **0.5986** |
| pearson_manhattan   | 0.5227     |
| spearman_manhattan  | 0.5984     |
| pearson_euclidean   | 0.5227     |
| spearman_euclidean  | 0.5986     |
| pearson_dot         | 0.5043     |
| spearman_dot        | 0.5986     |
| pearson_max         | 0.5227     |
| spearman_max        | 0.5986     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 10,975,066 training samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence                                                                           | label                                |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
  | type    | string                                                                             | list                                 |
  | details | <ul><li>min: 6 tokens</li><li>mean: 26.93 tokens</li><li>max: 139 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
  | sentence                                                                                                                                                                                             | label                                                                                                                               |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------|
  | <code>It is based on the Java Persistence API (JPA), but it does not strictly follow the JSR 338 Specification, as it implements different design patterns and technologies.</code>                  | <code>[-0.012331949546933174, -0.04570527374744415, -0.024963658303022385, -0.03620213270187378, 0.022556383162736893, ...]</code>  |
  | <code>Покупаем вторичное сырье в Каунасе (Переработка вторичного сырья) - Алфенас АНД КО, ЗАО на Bizorg.</code>                                                                                      | <code>[-0.07498518377542496, -0.01913534104824066, -0.01797042042016983, 0.048263177275657654, -0.00016611881437711418, ...]</code> |
  | <code>At the Equal Justice Conference ( EJC ) held in March 2001 in San Diego , LSC and the Project for the Future of Equal Justice held the second Case Management Software pre-conference .</code> | <code>[0.03870972990989685, -0.0638347640633583, -0.01696585863828659, -0.043612319976091385, -0.048241738229990005, ...]</code>    |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

### Evaluation Dataset

#### Unnamed Dataset


* Size: 10,000 evaluation samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence                                                                           | label                                |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
  | type    | string                                                                             | list                                 |
  | details | <ul><li>min: 5 tokens</li><li>mean: 24.18 tokens</li><li>max: 111 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
  | sentence                                                                                                                                                                                                           | label                                                                                                                              |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------|
  | <code>The Canadian Canoe Museum is a museum dedicated to canoes located in Peterborough, Ontario, Canada.</code>                                                                                                   | <code>[-0.05444105342030525, -0.03650881350040436, -0.041163671761751175, -0.010616903193295002, -0.04094529151916504, ...]</code> |
  | <code>И мне нравилось, что я одновременно зарабатываю и смотрю бои».</code>                                                                                                                                        | <code>[-0.03404555842280388, 0.028203096240758896, -0.056121889501810074, -0.0591997392475605, -0.05523117259144783, ...]</code>   |
  | <code>Ну, а на следующий день, разумеется, Президент Кеннеди объявил блокаду Кубы, и наши корабли остановили у кубинских берегов направлявшийся на Кубу российский корабль, и у него на борту нашли ракеты.</code> | <code>[-0.008193841204047203, 0.00694894278421998, -0.03027420863509178, -0.03290146216750145, 0.01425305474549532, ...]</code>    |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 0.0001
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.0001
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch      | Step     | Training Loss | loss       | negative_mse | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|:----------:|:--------:|:-------------:|:----------:|:------------:|:-----------------------:|:------------------------:|
| 0          | 0        | -             | -          | -0.2381      | 0.4206                  | -                        |
| 0.0058     | 1000     | 0.0014        | -          | -            | -                       | -                        |
| 0.0117     | 2000     | 0.0009        | -          | -            | -                       | -                        |
| 0.0175     | 3000     | 0.0007        | -          | -            | -                       | -                        |
| 0.0233     | 4000     | 0.0006        | -          | -            | -                       | -                        |
| **0.0292** | **5000** | **0.0005**    | **0.0004** | **-0.0363**  | **0.6393**              | **-**                    |
| 0.0350     | 6000     | 0.0004        | -          | -            | -                       | -                        |
| 0.0408     | 7000     | 0.0004        | -          | -            | -                       | -                        |
| 0.0467     | 8000     | 0.0003        | -          | -            | -                       | -                        |
| 0.0525     | 9000     | 0.0003        | -          | -            | -                       | -                        |
| 0.0583     | 10000    | 0.0003        | 0.0002     | -0.0207      | 0.6350                  | -                        |
| 0.0641     | 11000    | 0.0003        | -          | -            | -                       | -                        |
| 0.0700     | 12000    | 0.0003        | -          | -            | -                       | -                        |
| 0.0758     | 13000    | 0.0002        | -          | -            | -                       | -                        |
| 0.0816     | 14000    | 0.0002        | -          | -            | -                       | -                        |
| 0.0875     | 15000    | 0.0002        | 0.0002     | -0.0157      | 0.6328                  | -                        |
| 0.0933     | 16000    | 0.0002        | -          | -            | -                       | -                        |
| 0.0991     | 17000    | 0.0002        | -          | -            | -                       | -                        |
| 0.1050     | 18000    | 0.0002        | -          | -            | -                       | -                        |
| 0.1108     | 19000    | 0.0002        | -          | -            | -                       | -                        |
| 0.1166     | 20000    | 0.0002        | 0.0001     | -0.0132      | 0.6317                  | -                        |
| 0.1225     | 21000    | 0.0002        | -          | -            | -                       | -                        |
| 0.1283     | 22000    | 0.0002        | -          | -            | -                       | -                        |
| 0.1341     | 23000    | 0.0002        | -          | -            | -                       | -                        |
| 0.1400     | 24000    | 0.0002        | -          | -            | -                       | -                        |
| 0.1458     | 25000    | 0.0002        | 0.0001     | -0.0118      | 0.6251                  | -                        |
| 0.1516     | 26000    | 0.0002        | -          | -            | -                       | -                        |
| 0.1574     | 27000    | 0.0002        | -          | -            | -                       | -                        |
| 0.1633     | 28000    | 0.0002        | -          | -            | -                       | -                        |
| 0.1691     | 29000    | 0.0002        | -          | -            | -                       | -                        |
| 0.1749     | 30000    | 0.0002        | 0.0001     | -0.0109      | 0.6304                  | -                        |
| 0.1808     | 31000    | 0.0002        | -          | -            | -                       | -                        |
| 0.1866     | 32000    | 0.0002        | -          | -            | -                       | -                        |
| 0.1924     | 33000    | 0.0002        | -          | -            | -                       | -                        |
| 0.1983     | 34000    | 0.0001        | -          | -            | -                       | -                        |
| 0.2041     | 35000    | 0.0001        | 0.0001     | -0.0102      | 0.6280                  | -                        |
| 0.2099     | 36000    | 0.0001        | -          | -            | -                       | -                        |
| 0.2158     | 37000    | 0.0001        | -          | -            | -                       | -                        |
| 0.2216     | 38000    | 0.0001        | -          | -            | -                       | -                        |
| 0.2274     | 39000    | 0.0001        | -          | -            | -                       | -                        |
| 0.2333     | 40000    | 0.0001        | 0.0001     | -0.0098      | 0.6272                  | -                        |
| 0.2391     | 41000    | 0.0001        | -          | -            | -                       | -                        |
| 0.2449     | 42000    | 0.0001        | -          | -            | -                       | -                        |
| 0.2507     | 43000    | 0.0001        | -          | -            | -                       | -                        |
| 0.2566     | 44000    | 0.0001        | -          | -            | -                       | -                        |
| 0.2624     | 45000    | 0.0001        | 0.0001     | -0.0093      | 0.6378                  | -                        |
| 0.2682     | 46000    | 0.0001        | -          | -            | -                       | -                        |
| 0.2741     | 47000    | 0.0001        | -          | -            | -                       | -                        |
| 0.2799     | 48000    | 0.0001        | -          | -            | -                       | -                        |
| 0.2857     | 49000    | 0.0001        | -          | -            | -                       | -                        |
| 0.2916     | 50000    | 0.0001        | 0.0001     | -0.0089      | 0.6325                  | -                        |
| 0.2974     | 51000    | 0.0001        | -          | -            | -                       | -                        |
| 0.3032     | 52000    | 0.0001        | -          | -            | -                       | -                        |
| 0.3091     | 53000    | 0.0001        | -          | -            | -                       | -                        |
| 0.3149     | 54000    | 0.0001        | -          | -            | -                       | -                        |
| 0.3207     | 55000    | 0.0001        | 0.0001     | -0.0087      | 0.6328                  | -                        |
| 0.3266     | 56000    | 0.0001        | -          | -            | -                       | -                        |
| 0.3324     | 57000    | 0.0001        | -          | -            | -                       | -                        |
| 0.3382     | 58000    | 0.0001        | -          | -            | -                       | -                        |
| 0.3441     | 59000    | 0.0001        | -          | -            | -                       | -                        |
| 0.3499     | 60000    | 0.0001        | 0.0001     | -0.0085      | 0.6357                  | -                        |
| 0.3557     | 61000    | 0.0001        | -          | -            | -                       | -                        |
| 0.3615     | 62000    | 0.0001        | -          | -            | -                       | -                        |
| 0.3674     | 63000    | 0.0001        | -          | -            | -                       | -                        |
| 0.3732     | 64000    | 0.0001        | -          | -            | -                       | -                        |
| 0.3790     | 65000    | 0.0001        | 0.0001     | -0.0083      | 0.6366                  | -                        |
| 0.3849     | 66000    | 0.0001        | -          | -            | -                       | -                        |
| 0.3907     | 67000    | 0.0001        | -          | -            | -                       | -                        |
| 0.3965     | 68000    | 0.0001        | -          | -            | -                       | -                        |
| 0.4024     | 69000    | 0.0001        | -          | -            | -                       | -                        |
| 0.4082     | 70000    | 0.0001        | 0.0001     | -0.0080      | 0.6325                  | -                        |
| 0.4140     | 71000    | 0.0001        | -          | -            | -                       | -                        |
| 0.4199     | 72000    | 0.0001        | -          | -            | -                       | -                        |
| 0.4257     | 73000    | 0.0001        | -          | -            | -                       | -                        |
| 0.4315     | 74000    | 0.0001        | -          | -            | -                       | -                        |
| 0.4374     | 75000    | 0.0001        | 0.0001     | -0.0078      | 0.6351                  | -                        |
| 0.4432     | 76000    | 0.0001        | -          | -            | -                       | -                        |
| 0.4490     | 77000    | 0.0001        | -          | -            | -                       | -                        |
| 0.4548     | 78000    | 0.0001        | -          | -            | -                       | -                        |
| 0.4607     | 79000    | 0.0001        | -          | -            | -                       | -                        |
| 0.4665     | 80000    | 0.0001        | 0.0001     | -0.0077      | 0.6323                  | -                        |
| 0.4723     | 81000    | 0.0001        | -          | -            | -                       | -                        |
| 0.4782     | 82000    | 0.0001        | -          | -            | -                       | -                        |
| 0.4840     | 83000    | 0.0001        | -          | -            | -                       | -                        |
| 0.4898     | 84000    | 0.0001        | -          | -            | -                       | -                        |
| 0.4957     | 85000    | 0.0001        | 0.0001     | -0.0076      | 0.6316                  | -                        |
| 0.5015     | 86000    | 0.0001        | -          | -            | -                       | -                        |
| 0.5073     | 87000    | 0.0001        | -          | -            | -                       | -                        |
| 0.5132     | 88000    | 0.0001        | -          | -            | -                       | -                        |
| 0.5190     | 89000    | 0.0001        | -          | -            | -                       | -                        |
| 0.5248     | 90000    | 0.0001        | 0.0001     | -0.0074      | 0.6306                  | -                        |
| 0.5307     | 91000    | 0.0001        | -          | -            | -                       | -                        |
| 0.5365     | 92000    | 0.0001        | -          | -            | -                       | -                        |
| 0.5423     | 93000    | 0.0001        | -          | -            | -                       | -                        |
| 0.5481     | 94000    | 0.0001        | -          | -            | -                       | -                        |
| 0.5540     | 95000    | 0.0001        | 0.0001     | -0.0073      | 0.6305                  | -                        |
| 0.5598     | 96000    | 0.0001        | -          | -            | -                       | -                        |
| 0.5656     | 97000    | 0.0001        | -          | -            | -                       | -                        |
| 0.5715     | 98000    | 0.0001        | -          | -            | -                       | -                        |
| 0.5773     | 99000    | 0.0001        | -          | -            | -                       | -                        |
| 0.5831     | 100000   | 0.0001        | 0.0001     | -0.0072      | 0.6333                  | -                        |
| 0.5890     | 101000   | 0.0001        | -          | -            | -                       | -                        |
| 0.5948     | 102000   | 0.0001        | -          | -            | -                       | -                        |
| 0.6006     | 103000   | 0.0001        | -          | -            | -                       | -                        |
| 0.6065     | 104000   | 0.0001        | -          | -            | -                       | -                        |
| 0.6123     | 105000   | 0.0001        | 0.0001     | -0.0071      | 0.6351                  | -                        |
| 0.6181     | 106000   | 0.0001        | -          | -            | -                       | -                        |
| 0.6240     | 107000   | 0.0001        | -          | -            | -                       | -                        |
| 0.6298     | 108000   | 0.0001        | -          | -            | -                       | -                        |
| 0.6356     | 109000   | 0.0001        | -          | -            | -                       | -                        |
| 0.6415     | 110000   | 0.0001        | 0.0001     | -0.0070      | 0.6330                  | -                        |
| 0.6473     | 111000   | 0.0001        | -          | -            | -                       | -                        |
| 0.6531     | 112000   | 0.0001        | -          | -            | -                       | -                        |
| 0.6589     | 113000   | 0.0001        | -          | -            | -                       | -                        |
| 0.6648     | 114000   | 0.0001        | -          | -            | -                       | -                        |
| 0.6706     | 115000   | 0.0001        | 0.0001     | -0.0070      | 0.6336                  | -                        |
| 0.6764     | 116000   | 0.0001        | -          | -            | -                       | -                        |
| 0.6823     | 117000   | 0.0001        | -          | -            | -                       | -                        |
| 0.6881     | 118000   | 0.0001        | -          | -            | -                       | -                        |
| 0.6939     | 119000   | 0.0001        | -          | -            | -                       | -                        |
| 0.6998     | 120000   | 0.0001        | 0.0001     | -0.0069      | 0.6305                  | -                        |
| 0.7056     | 121000   | 0.0001        | -          | -            | -                       | -                        |
| 0.7114     | 122000   | 0.0001        | -          | -            | -                       | -                        |
| 0.7173     | 123000   | 0.0001        | -          | -            | -                       | -                        |
| 0.7231     | 124000   | 0.0001        | -          | -            | -                       | -                        |
| 0.7289     | 125000   | 0.0001        | 0.0001     | -0.0068      | 0.6362                  | -                        |
| 0.7348     | 126000   | 0.0001        | -          | -            | -                       | -                        |
| 0.7406     | 127000   | 0.0001        | -          | -            | -                       | -                        |
| 0.7464     | 128000   | 0.0001        | -          | -            | -                       | -                        |
| 0.7522     | 129000   | 0.0001        | -          | -            | -                       | -                        |
| 0.7581     | 130000   | 0.0001        | 0.0001     | -0.0067      | 0.6340                  | -                        |
| 0.7639     | 131000   | 0.0001        | -          | -            | -                       | -                        |
| 0.7697     | 132000   | 0.0001        | -          | -            | -                       | -                        |
| 0.7756     | 133000   | 0.0001        | -          | -            | -                       | -                        |
| 0.7814     | 134000   | 0.0001        | -          | -            | -                       | -                        |
| 0.7872     | 135000   | 0.0001        | 0.0001     | -0.0067      | 0.6365                  | -                        |
| 0.7931     | 136000   | 0.0001        | -          | -            | -                       | -                        |
| 0.7989     | 137000   | 0.0001        | -          | -            | -                       | -                        |
| 0.8047     | 138000   | 0.0001        | -          | -            | -                       | -                        |
| 0.8106     | 139000   | 0.0001        | -          | -            | -                       | -                        |
| 0.8164     | 140000   | 0.0001        | 0.0001     | -0.0066      | 0.6339                  | -                        |
| 0.8222     | 141000   | 0.0001        | -          | -            | -                       | -                        |
| 0.8281     | 142000   | 0.0001        | -          | -            | -                       | -                        |
| 0.8339     | 143000   | 0.0001        | -          | -            | -                       | -                        |
| 0.8397     | 144000   | 0.0001        | -          | -            | -                       | -                        |
| 0.8456     | 145000   | 0.0001        | 0.0001     | -0.0066      | 0.6352                  | -                        |
| 0.8514     | 146000   | 0.0001        | -          | -            | -                       | -                        |
| 0.8572     | 147000   | 0.0001        | -          | -            | -                       | -                        |
| 0.8630     | 148000   | 0.0001        | -          | -            | -                       | -                        |
| 0.8689     | 149000   | 0.0001        | -          | -            | -                       | -                        |
| 0.8747     | 150000   | 0.0001        | 0.0001     | -0.0065      | 0.6357                  | -                        |
| 0.8805     | 151000   | 0.0001        | -          | -            | -                       | -                        |
| 0.8864     | 152000   | 0.0001        | -          | -            | -                       | -                        |
| 0.8922     | 153000   | 0.0001        | -          | -            | -                       | -                        |
| 0.8980     | 154000   | 0.0001        | -          | -            | -                       | -                        |
| 0.9039     | 155000   | 0.0001        | 0.0001     | -0.0065      | 0.6336                  | -                        |
| 0.9097     | 156000   | 0.0001        | -          | -            | -                       | -                        |
| 0.9155     | 157000   | 0.0001        | -          | -            | -                       | -                        |
| 0.9214     | 158000   | 0.0001        | -          | -            | -                       | -                        |
| 0.9272     | 159000   | 0.0001        | -          | -            | -                       | -                        |
| 0.9330     | 160000   | 0.0001        | 0.0001     | -0.0064      | 0.6334                  | -                        |
| 0.9389     | 161000   | 0.0001        | -          | -            | -                       | -                        |
| 0.9447     | 162000   | 0.0001        | -          | -            | -                       | -                        |
| 0.9505     | 163000   | 0.0001        | -          | -            | -                       | -                        |
| 0.9563     | 164000   | 0.0001        | -          | -            | -                       | -                        |
| 0.9622     | 165000   | 0.0001        | 0.0001     | -0.0064      | 0.6337                  | -                        |
| 0.9680     | 166000   | 0.0001        | -          | -            | -                       | -                        |
| 0.9738     | 167000   | 0.0001        | -          | -            | -                       | -                        |
| 0.9797     | 168000   | 0.0001        | -          | -            | -                       | -                        |
| 0.9855     | 169000   | 0.0001        | -          | -            | -                       | -                        |
| 0.9913     | 170000   | 0.0001        | 0.0001     | -0.0063      | 0.6347                  | -                        |
| 0.9972     | 171000   | 0.0001        | -          | -            | -                       | -                        |
| 1.0        | 171486   | -             | -          | -            | -                       | 0.5986                   |

* The bold row denotes the saved checkpoint.
</details>

### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MSELoss
```bibtex
@inproceedings{reimers-2020-multilingual-sentence-bert,
    title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2020",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2004.09813",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->