File size: 42,968 Bytes
d0a690d 2412ed2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 |
---
base_model: cointegrated/LaBSE-en-ru
language:
- ru
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- negative_mse
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10975066
- loss:MSELoss
widget:
- source_sentence: Такие лодки строились, чтобы получить быстрый доступ к приходящим судам.
sentences:
- been nice talking to you
- >-
Нельзя ставить под сомнение притязания клиента, если не были предприняты
шаги.
- >-
Dharangaon Railway Station serves Dharangaon in Jalgaon district in the
Indian state of Maharashtra.
- source_sentence: >-
Если прилагательные смягчают этнические термины, существительные могут
сделать их жестче.
sentences:
- >-
Вслед за этим последовало секретное письмо А.Б.Чубайса об изъятии у МЦР,
переданного ему С.Н.Рерихом наследия.
- Coaches should not give young athletes a hard time.
- Эшкрофт хотел прослушивать сводки новостей снова и снова
- source_sentence: Земля была мягкой.
sentences:
- >-
По мере того, как самообладание покидало его, сердце его все больше
наполнялось тревогой.
- >-
Our borders and immigration system, including law enforcement, ought to send
a message of welcome, tolerance, and justice to members of immigrant
communities in the United States and in their countries of origin.
- >-
Начнут действовать льготные условия аренды земель, которые предназначены для
реализации инвестиционных проектов.
- source_sentence: >-
Что же касается рава Кука: мой рав лично знал его и много раз с теплотой
рассказывал мне о нем как о великом каббалисте.
sentences:
- Вдова Эдгара Эванса, его дети и мать получили 1500 фунтов стерлингов (
- Please do not make any changes to your address.
- Мы уже закончили все запланированные дела!
- source_sentence: See Name section.
sentences:
- >-
Ms. Packard is the voice of the female blood elf in the video game World of
Warcraft.
- >-
Основным функциональным элементом, реализующим функции управления
соединением, является абонентский терминал.
- Yeah, people who might not be hungry.
model-index:
- name: SentenceTransformer based on cointegrated/LaBSE-en-ru
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.5305176535187099
name: Pearson Cosine
- type: spearman_cosine
value: 0.6347069834349862
name: Spearman Cosine
- type: pearson_manhattan
value: 0.5553415140113596
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6389336208598283
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.5499910306125031
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6347073809507647
name: Spearman Euclidean
- type: pearson_dot
value: 0.5305176585564861
name: Pearson Dot
- type: spearman_dot
value: 0.6347078463557637
name: Spearman Dot
- type: pearson_max
value: 0.5553415140113596
name: Pearson Max
- type: spearman_max
value: 0.6389336208598283
name: Spearman Max
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: Unknown
type: unknown
metrics:
- type: negative_mse
value: -0.006337030936265364
name: Negative Mse
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.5042796836494269
name: Pearson Cosine
- type: spearman_cosine
value: 0.5986471772428711
name: Spearman Cosine
- type: pearson_manhattan
value: 0.522744495080616
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.5983901280447074
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.522721961447153
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.5986471095414022
name: Spearman Euclidean
- type: pearson_dot
value: 0.504279685613151
name: Pearson Dot
- type: spearman_dot
value: 0.598648155615724
name: Spearman Dot
- type: pearson_max
value: 0.522744495080616
name: Pearson Max
- type: spearman_max
value: 0.598648155615724
name: Spearman Max
---
# SentenceTransformer based on cointegrated/LaBSE-en-ru
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [cointegrated/LaBSE-en-ru](https://huggingface.co/cointegrated/LaBSE-en-ru). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [cointegrated/LaBSE-en-ru](https://huggingface.co/cointegrated/LaBSE-en-ru) <!-- at revision cf0714e606d4af551e14ad69a7929cd6b0da7f7e -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("whitemouse84/LaBSE-en-ru-distilled-each-third-layer")
# Run inference
sentences = [
'See Name section.',
'Ms. Packard is the voice of the female blood elf in the video game World of Warcraft.',
'Yeah, people who might not be hungry.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.5305 |
| **spearman_cosine** | **0.6347** |
| pearson_manhattan | 0.5553 |
| spearman_manhattan | 0.6389 |
| pearson_euclidean | 0.55 |
| spearman_euclidean | 0.6347 |
| pearson_dot | 0.5305 |
| spearman_dot | 0.6347 |
| pearson_max | 0.5553 |
| spearman_max | 0.6389 |
#### Knowledge Distillation
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
| Metric | Value |
|:-----------------|:------------|
| **negative_mse** | **-0.0063** |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.5043 |
| **spearman_cosine** | **0.5986** |
| pearson_manhattan | 0.5227 |
| spearman_manhattan | 0.5984 |
| pearson_euclidean | 0.5227 |
| spearman_euclidean | 0.5986 |
| pearson_dot | 0.5043 |
| spearman_dot | 0.5986 |
| pearson_max | 0.5227 |
| spearman_max | 0.5986 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 10,975,066 training samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence | label |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | list |
| details | <ul><li>min: 6 tokens</li><li>mean: 26.93 tokens</li><li>max: 139 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
| sentence | label |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------|
| <code>It is based on the Java Persistence API (JPA), but it does not strictly follow the JSR 338 Specification, as it implements different design patterns and technologies.</code> | <code>[-0.012331949546933174, -0.04570527374744415, -0.024963658303022385, -0.03620213270187378, 0.022556383162736893, ...]</code> |
| <code>Покупаем вторичное сырье в Каунасе (Переработка вторичного сырья) - Алфенас АНД КО, ЗАО на Bizorg.</code> | <code>[-0.07498518377542496, -0.01913534104824066, -0.01797042042016983, 0.048263177275657654, -0.00016611881437711418, ...]</code> |
| <code>At the Equal Justice Conference ( EJC ) held in March 2001 in San Diego , LSC and the Project for the Future of Equal Justice held the second Case Management Software pre-conference .</code> | <code>[0.03870972990989685, -0.0638347640633583, -0.01696585863828659, -0.043612319976091385, -0.048241738229990005, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
### Evaluation Dataset
#### Unnamed Dataset
* Size: 10,000 evaluation samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence | label |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | list |
| details | <ul><li>min: 5 tokens</li><li>mean: 24.18 tokens</li><li>max: 111 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
* Samples:
| sentence | label |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------|
| <code>The Canadian Canoe Museum is a museum dedicated to canoes located in Peterborough, Ontario, Canada.</code> | <code>[-0.05444105342030525, -0.03650881350040436, -0.041163671761751175, -0.010616903193295002, -0.04094529151916504, ...]</code> |
| <code>И мне нравилось, что я одновременно зарабатываю и смотрю бои».</code> | <code>[-0.03404555842280388, 0.028203096240758896, -0.056121889501810074, -0.0591997392475605, -0.05523117259144783, ...]</code> |
| <code>Ну, а на следующий день, разумеется, Президент Кеннеди объявил блокаду Кубы, и наши корабли остановили у кубинских берегов направлявшийся на Кубу российский корабль, и у него на борту нашли ракеты.</code> | <code>[-0.008193841204047203, 0.00694894278421998, -0.03027420863509178, -0.03290146216750145, 0.01425305474549532, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 0.0001
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.0001
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | loss | negative_mse | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|:----------:|:--------:|:-------------:|:----------:|:------------:|:-----------------------:|:------------------------:|
| 0 | 0 | - | - | -0.2381 | 0.4206 | - |
| 0.0058 | 1000 | 0.0014 | - | - | - | - |
| 0.0117 | 2000 | 0.0009 | - | - | - | - |
| 0.0175 | 3000 | 0.0007 | - | - | - | - |
| 0.0233 | 4000 | 0.0006 | - | - | - | - |
| **0.0292** | **5000** | **0.0005** | **0.0004** | **-0.0363** | **0.6393** | **-** |
| 0.0350 | 6000 | 0.0004 | - | - | - | - |
| 0.0408 | 7000 | 0.0004 | - | - | - | - |
| 0.0467 | 8000 | 0.0003 | - | - | - | - |
| 0.0525 | 9000 | 0.0003 | - | - | - | - |
| 0.0583 | 10000 | 0.0003 | 0.0002 | -0.0207 | 0.6350 | - |
| 0.0641 | 11000 | 0.0003 | - | - | - | - |
| 0.0700 | 12000 | 0.0003 | - | - | - | - |
| 0.0758 | 13000 | 0.0002 | - | - | - | - |
| 0.0816 | 14000 | 0.0002 | - | - | - | - |
| 0.0875 | 15000 | 0.0002 | 0.0002 | -0.0157 | 0.6328 | - |
| 0.0933 | 16000 | 0.0002 | - | - | - | - |
| 0.0991 | 17000 | 0.0002 | - | - | - | - |
| 0.1050 | 18000 | 0.0002 | - | - | - | - |
| 0.1108 | 19000 | 0.0002 | - | - | - | - |
| 0.1166 | 20000 | 0.0002 | 0.0001 | -0.0132 | 0.6317 | - |
| 0.1225 | 21000 | 0.0002 | - | - | - | - |
| 0.1283 | 22000 | 0.0002 | - | - | - | - |
| 0.1341 | 23000 | 0.0002 | - | - | - | - |
| 0.1400 | 24000 | 0.0002 | - | - | - | - |
| 0.1458 | 25000 | 0.0002 | 0.0001 | -0.0118 | 0.6251 | - |
| 0.1516 | 26000 | 0.0002 | - | - | - | - |
| 0.1574 | 27000 | 0.0002 | - | - | - | - |
| 0.1633 | 28000 | 0.0002 | - | - | - | - |
| 0.1691 | 29000 | 0.0002 | - | - | - | - |
| 0.1749 | 30000 | 0.0002 | 0.0001 | -0.0109 | 0.6304 | - |
| 0.1808 | 31000 | 0.0002 | - | - | - | - |
| 0.1866 | 32000 | 0.0002 | - | - | - | - |
| 0.1924 | 33000 | 0.0002 | - | - | - | - |
| 0.1983 | 34000 | 0.0001 | - | - | - | - |
| 0.2041 | 35000 | 0.0001 | 0.0001 | -0.0102 | 0.6280 | - |
| 0.2099 | 36000 | 0.0001 | - | - | - | - |
| 0.2158 | 37000 | 0.0001 | - | - | - | - |
| 0.2216 | 38000 | 0.0001 | - | - | - | - |
| 0.2274 | 39000 | 0.0001 | - | - | - | - |
| 0.2333 | 40000 | 0.0001 | 0.0001 | -0.0098 | 0.6272 | - |
| 0.2391 | 41000 | 0.0001 | - | - | - | - |
| 0.2449 | 42000 | 0.0001 | - | - | - | - |
| 0.2507 | 43000 | 0.0001 | - | - | - | - |
| 0.2566 | 44000 | 0.0001 | - | - | - | - |
| 0.2624 | 45000 | 0.0001 | 0.0001 | -0.0093 | 0.6378 | - |
| 0.2682 | 46000 | 0.0001 | - | - | - | - |
| 0.2741 | 47000 | 0.0001 | - | - | - | - |
| 0.2799 | 48000 | 0.0001 | - | - | - | - |
| 0.2857 | 49000 | 0.0001 | - | - | - | - |
| 0.2916 | 50000 | 0.0001 | 0.0001 | -0.0089 | 0.6325 | - |
| 0.2974 | 51000 | 0.0001 | - | - | - | - |
| 0.3032 | 52000 | 0.0001 | - | - | - | - |
| 0.3091 | 53000 | 0.0001 | - | - | - | - |
| 0.3149 | 54000 | 0.0001 | - | - | - | - |
| 0.3207 | 55000 | 0.0001 | 0.0001 | -0.0087 | 0.6328 | - |
| 0.3266 | 56000 | 0.0001 | - | - | - | - |
| 0.3324 | 57000 | 0.0001 | - | - | - | - |
| 0.3382 | 58000 | 0.0001 | - | - | - | - |
| 0.3441 | 59000 | 0.0001 | - | - | - | - |
| 0.3499 | 60000 | 0.0001 | 0.0001 | -0.0085 | 0.6357 | - |
| 0.3557 | 61000 | 0.0001 | - | - | - | - |
| 0.3615 | 62000 | 0.0001 | - | - | - | - |
| 0.3674 | 63000 | 0.0001 | - | - | - | - |
| 0.3732 | 64000 | 0.0001 | - | - | - | - |
| 0.3790 | 65000 | 0.0001 | 0.0001 | -0.0083 | 0.6366 | - |
| 0.3849 | 66000 | 0.0001 | - | - | - | - |
| 0.3907 | 67000 | 0.0001 | - | - | - | - |
| 0.3965 | 68000 | 0.0001 | - | - | - | - |
| 0.4024 | 69000 | 0.0001 | - | - | - | - |
| 0.4082 | 70000 | 0.0001 | 0.0001 | -0.0080 | 0.6325 | - |
| 0.4140 | 71000 | 0.0001 | - | - | - | - |
| 0.4199 | 72000 | 0.0001 | - | - | - | - |
| 0.4257 | 73000 | 0.0001 | - | - | - | - |
| 0.4315 | 74000 | 0.0001 | - | - | - | - |
| 0.4374 | 75000 | 0.0001 | 0.0001 | -0.0078 | 0.6351 | - |
| 0.4432 | 76000 | 0.0001 | - | - | - | - |
| 0.4490 | 77000 | 0.0001 | - | - | - | - |
| 0.4548 | 78000 | 0.0001 | - | - | - | - |
| 0.4607 | 79000 | 0.0001 | - | - | - | - |
| 0.4665 | 80000 | 0.0001 | 0.0001 | -0.0077 | 0.6323 | - |
| 0.4723 | 81000 | 0.0001 | - | - | - | - |
| 0.4782 | 82000 | 0.0001 | - | - | - | - |
| 0.4840 | 83000 | 0.0001 | - | - | - | - |
| 0.4898 | 84000 | 0.0001 | - | - | - | - |
| 0.4957 | 85000 | 0.0001 | 0.0001 | -0.0076 | 0.6316 | - |
| 0.5015 | 86000 | 0.0001 | - | - | - | - |
| 0.5073 | 87000 | 0.0001 | - | - | - | - |
| 0.5132 | 88000 | 0.0001 | - | - | - | - |
| 0.5190 | 89000 | 0.0001 | - | - | - | - |
| 0.5248 | 90000 | 0.0001 | 0.0001 | -0.0074 | 0.6306 | - |
| 0.5307 | 91000 | 0.0001 | - | - | - | - |
| 0.5365 | 92000 | 0.0001 | - | - | - | - |
| 0.5423 | 93000 | 0.0001 | - | - | - | - |
| 0.5481 | 94000 | 0.0001 | - | - | - | - |
| 0.5540 | 95000 | 0.0001 | 0.0001 | -0.0073 | 0.6305 | - |
| 0.5598 | 96000 | 0.0001 | - | - | - | - |
| 0.5656 | 97000 | 0.0001 | - | - | - | - |
| 0.5715 | 98000 | 0.0001 | - | - | - | - |
| 0.5773 | 99000 | 0.0001 | - | - | - | - |
| 0.5831 | 100000 | 0.0001 | 0.0001 | -0.0072 | 0.6333 | - |
| 0.5890 | 101000 | 0.0001 | - | - | - | - |
| 0.5948 | 102000 | 0.0001 | - | - | - | - |
| 0.6006 | 103000 | 0.0001 | - | - | - | - |
| 0.6065 | 104000 | 0.0001 | - | - | - | - |
| 0.6123 | 105000 | 0.0001 | 0.0001 | -0.0071 | 0.6351 | - |
| 0.6181 | 106000 | 0.0001 | - | - | - | - |
| 0.6240 | 107000 | 0.0001 | - | - | - | - |
| 0.6298 | 108000 | 0.0001 | - | - | - | - |
| 0.6356 | 109000 | 0.0001 | - | - | - | - |
| 0.6415 | 110000 | 0.0001 | 0.0001 | -0.0070 | 0.6330 | - |
| 0.6473 | 111000 | 0.0001 | - | - | - | - |
| 0.6531 | 112000 | 0.0001 | - | - | - | - |
| 0.6589 | 113000 | 0.0001 | - | - | - | - |
| 0.6648 | 114000 | 0.0001 | - | - | - | - |
| 0.6706 | 115000 | 0.0001 | 0.0001 | -0.0070 | 0.6336 | - |
| 0.6764 | 116000 | 0.0001 | - | - | - | - |
| 0.6823 | 117000 | 0.0001 | - | - | - | - |
| 0.6881 | 118000 | 0.0001 | - | - | - | - |
| 0.6939 | 119000 | 0.0001 | - | - | - | - |
| 0.6998 | 120000 | 0.0001 | 0.0001 | -0.0069 | 0.6305 | - |
| 0.7056 | 121000 | 0.0001 | - | - | - | - |
| 0.7114 | 122000 | 0.0001 | - | - | - | - |
| 0.7173 | 123000 | 0.0001 | - | - | - | - |
| 0.7231 | 124000 | 0.0001 | - | - | - | - |
| 0.7289 | 125000 | 0.0001 | 0.0001 | -0.0068 | 0.6362 | - |
| 0.7348 | 126000 | 0.0001 | - | - | - | - |
| 0.7406 | 127000 | 0.0001 | - | - | - | - |
| 0.7464 | 128000 | 0.0001 | - | - | - | - |
| 0.7522 | 129000 | 0.0001 | - | - | - | - |
| 0.7581 | 130000 | 0.0001 | 0.0001 | -0.0067 | 0.6340 | - |
| 0.7639 | 131000 | 0.0001 | - | - | - | - |
| 0.7697 | 132000 | 0.0001 | - | - | - | - |
| 0.7756 | 133000 | 0.0001 | - | - | - | - |
| 0.7814 | 134000 | 0.0001 | - | - | - | - |
| 0.7872 | 135000 | 0.0001 | 0.0001 | -0.0067 | 0.6365 | - |
| 0.7931 | 136000 | 0.0001 | - | - | - | - |
| 0.7989 | 137000 | 0.0001 | - | - | - | - |
| 0.8047 | 138000 | 0.0001 | - | - | - | - |
| 0.8106 | 139000 | 0.0001 | - | - | - | - |
| 0.8164 | 140000 | 0.0001 | 0.0001 | -0.0066 | 0.6339 | - |
| 0.8222 | 141000 | 0.0001 | - | - | - | - |
| 0.8281 | 142000 | 0.0001 | - | - | - | - |
| 0.8339 | 143000 | 0.0001 | - | - | - | - |
| 0.8397 | 144000 | 0.0001 | - | - | - | - |
| 0.8456 | 145000 | 0.0001 | 0.0001 | -0.0066 | 0.6352 | - |
| 0.8514 | 146000 | 0.0001 | - | - | - | - |
| 0.8572 | 147000 | 0.0001 | - | - | - | - |
| 0.8630 | 148000 | 0.0001 | - | - | - | - |
| 0.8689 | 149000 | 0.0001 | - | - | - | - |
| 0.8747 | 150000 | 0.0001 | 0.0001 | -0.0065 | 0.6357 | - |
| 0.8805 | 151000 | 0.0001 | - | - | - | - |
| 0.8864 | 152000 | 0.0001 | - | - | - | - |
| 0.8922 | 153000 | 0.0001 | - | - | - | - |
| 0.8980 | 154000 | 0.0001 | - | - | - | - |
| 0.9039 | 155000 | 0.0001 | 0.0001 | -0.0065 | 0.6336 | - |
| 0.9097 | 156000 | 0.0001 | - | - | - | - |
| 0.9155 | 157000 | 0.0001 | - | - | - | - |
| 0.9214 | 158000 | 0.0001 | - | - | - | - |
| 0.9272 | 159000 | 0.0001 | - | - | - | - |
| 0.9330 | 160000 | 0.0001 | 0.0001 | -0.0064 | 0.6334 | - |
| 0.9389 | 161000 | 0.0001 | - | - | - | - |
| 0.9447 | 162000 | 0.0001 | - | - | - | - |
| 0.9505 | 163000 | 0.0001 | - | - | - | - |
| 0.9563 | 164000 | 0.0001 | - | - | - | - |
| 0.9622 | 165000 | 0.0001 | 0.0001 | -0.0064 | 0.6337 | - |
| 0.9680 | 166000 | 0.0001 | - | - | - | - |
| 0.9738 | 167000 | 0.0001 | - | - | - | - |
| 0.9797 | 168000 | 0.0001 | - | - | - | - |
| 0.9855 | 169000 | 0.0001 | - | - | - | - |
| 0.9913 | 170000 | 0.0001 | 0.0001 | -0.0063 | 0.6347 | - |
| 0.9972 | 171000 | 0.0001 | - | - | - | - |
| 1.0 | 171486 | - | - | - | - | 0.5986 |
* The bold row denotes the saved checkpoint.
</details>
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MSELoss
```bibtex
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |