|
|
|
""" |
|
Created on Sun Sep 15 18:27:17 2024 |
|
|
|
@author: salikha4 |
|
""" |
|
|
|
import os |
|
import csv |
|
import json |
|
import shutil |
|
import random |
|
import argparse |
|
from datetime import datetime |
|
import pandas as pd |
|
import time |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.utils.data import Dataset, DataLoader, TensorDataset |
|
from torch.optim import Adam |
|
import numpy as np |
|
|
|
import warnings |
|
warnings.filterwarnings('ignore') |
|
from input_preprocess import * |
|
|
|
|
|
device_idx_ds = 3 |
|
device = torch.device(f'cuda:{device_idx_ds}' if torch.cuda.is_available() else "cpu") |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
|
|
def dataset_gen(preprocessed_chs, input_type, scenario_idxs, lwm_model): |
|
|
|
if input_type in ['cls_emb', 'channel_emb']: |
|
dataset = prepare_for_LWM(preprocessed_chs, device) |
|
elif input_type == 'raw': |
|
dataset = create_raw_dataset(preprocessed_chs, device) |
|
|
|
if input_type in ['cls_emb','channel_emb']: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lwm_loss, embedding_data = evaluate(lwm_model, dataset) |
|
|
|
print(f'LWM loss: {lwm_loss:.4f}') |
|
|
|
if input_type == 'cls_emb': |
|
embedding_data = embedding_data[:, 0] |
|
elif input_type == 'channel_emb': |
|
embedding_data = embedding_data[:, 1:] |
|
|
|
dataset = embedding_data.float() |
|
|
|
return dataset |
|
|
|
|
|
def prepare_for_LWM(data, device, batch_size=64, shuffle=False): |
|
|
|
input_ids, masked_tokens, masked_pos = zip(*data) |
|
|
|
input_ids_tensor = torch.tensor(input_ids, device=device).float() |
|
masked_tokens_tensor = torch.tensor(masked_tokens, device=device).float() |
|
masked_pos_tensor = torch.tensor(masked_pos, device=device).long() |
|
|
|
dataset = TensorDataset(input_ids_tensor, masked_tokens_tensor, masked_pos_tensor) |
|
|
|
return DataLoader(dataset, batch_size=batch_size, shuffle=shuffle) |
|
|
|
|
|
def create_raw_dataset(data, device): |
|
"""Create a dataset for raw channel data.""" |
|
input_ids, _, _ = zip(*data) |
|
input_data = torch.tensor(input_ids, device=device)[:, 1:] |
|
return input_data.float() |
|
|
|
|
|
def label_gen(task, data, scenario, n_beams=64): |
|
|
|
idxs = np.where(data['user']['LoS'] != -1)[0] |
|
|
|
if task == 'LoS/NLoS Classification': |
|
label = data['user']['LoS'][idxs] |
|
elif task == 'Beam Prediction': |
|
parameters, row_column_users, n_ant_bs, n_ant_ue, n_subcarriers = get_parameters(scenario) |
|
n_users = len(data['user']['channel']) |
|
n_subbands = 1 |
|
fov = 120 |
|
|
|
|
|
beam_angles = np.around(np.arange(-fov/2, fov/2+.1, fov/(n_beams-1)), 2) |
|
|
|
F1 = np.array([steering_vec(parameters['bs_antenna']['shape'], |
|
phi=azi*np.pi/180, |
|
kd=2*np.pi*parameters['bs_antenna']['spacing']).squeeze() |
|
for azi in beam_angles]) |
|
|
|
full_dbm = np.zeros((n_beams, n_subbands, n_users), dtype=float) |
|
for ue_idx in tqdm(range(n_users), desc='Computing the channel for each user'): |
|
if data['user']['LoS'][ue_idx] == -1: |
|
full_dbm[:,:,ue_idx] = np.nan |
|
else: |
|
chs = F1 @ data['user']['channel'][ue_idx] |
|
full_linear = np.abs(np.mean(chs.squeeze().reshape((n_beams, n_subbands, -1)), axis=-1)) |
|
full_dbm[:,:,ue_idx] = np.around(20*np.log10(full_linear) + 30, 1) |
|
|
|
best_beams = np.argmax(np.mean(full_dbm,axis=1), axis=0) |
|
best_beams = best_beams.astype(float) |
|
best_beams[np.isnan(full_dbm[0,0,:])] = np.nan |
|
max_bf_pwr = np.max(np.mean(full_dbm,axis=1), axis=0) |
|
|
|
label = best_beams[idxs] |
|
|
|
return label.astype(int) |
|
|
|
|
|
def steering_vec(array, phi=0, theta=0, kd=np.pi): |
|
|
|
|
|
idxs = DeepMIMOv3.ant_indices(array) |
|
resp = DeepMIMOv3.array_response(idxs, phi, theta+np.pi/2, kd) |
|
return resp / np.linalg.norm(resp) |
|
|
|
|
|
def evaluate(model, dataloader): |
|
|
|
model.eval() |
|
running_loss = 0.0 |
|
outputs = [] |
|
criterionMCM = nn.MSELoss() |
|
|
|
with torch.no_grad(): |
|
for batch in dataloader: |
|
input_ids = batch[0] |
|
masked_tokens = batch[1] |
|
masked_pos = batch[2] |
|
|
|
logits_lm, output = model(input_ids, masked_pos) |
|
|
|
output_batch_preproc = output |
|
outputs.append(output_batch_preproc) |
|
|
|
loss_lm = criterionMCM(logits_lm, masked_tokens) |
|
loss = loss_lm/torch.var(masked_tokens) |
|
running_loss += loss.item() |
|
|
|
average_loss = running_loss / len(dataloader) |
|
output_total = torch.cat(outputs, dim=0) |
|
|
|
return average_loss, output_total |
|
|
|
|
|
def label_prepend(deepmimo_data, preprocessed_chs, task, scenario_idxs, n_beams=64): |
|
labels = [] |
|
for scenario_idx in scenario_idxs: |
|
scenario_name = scenarios_list()[scenario_idx] |
|
|
|
data = deepmimo_data[scenario_idx] |
|
labels.extend(label_gen(task, data, scenario_name, n_beams=n_beams)) |
|
|
|
preprocessed_chs = [preprocessed_chs[i] + [labels[i]] for i in range(len(preprocessed_chs))] |
|
|
|
return preprocessed_chs |