|
""" |
|
LWM (Large Wireless Model) Implementation and Loading |
|
|
|
@author: salikha4 |
|
|
|
This module defines a Large Wireless Model (LWM) using PyTorch, including custom layers |
|
for embedding, self-attention, and feed-forward networks. It also provides functionality |
|
to load a pre-trained model from a checkpoint. |
|
|
|
Dependencies: |
|
- torch |
|
- numpy |
|
""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
|
|
ELEMENT_LENGTH = 16 |
|
D_MODEL = 64 |
|
MAX_LEN = 129 |
|
N_LAYERS = 12 |
|
N_HEADS = 12 |
|
D_FF = D_MODEL * 4 |
|
D_K = D_MODEL // N_HEADS |
|
D_V = D_MODEL // N_HEADS |
|
DROPOUT = 0.1 |
|
|
|
class LayerNormalization(nn.Module): |
|
def __init__(self, d_model: int, eps: float = 1e-6) -> None: |
|
super().__init__() |
|
self.eps = eps |
|
self.alpha = nn.Parameter(torch.ones(d_model)) |
|
self.bias = nn.Parameter(torch.zeros(d_model)) |
|
|
|
def forward(self, x): |
|
mean = x.mean(dim=-1, keepdim=True) |
|
std = x.std(dim=-1, keepdim=True) |
|
return self.alpha * (x - mean) / (std + self.eps) + self.bias |
|
|
|
class Embedding(nn.Module): |
|
def __init__(self, element_length, d_model, max_len): |
|
super().__init__() |
|
self.element_length = element_length |
|
self.d_model = d_model |
|
self.proj = nn.Linear(element_length, d_model) |
|
self.pos_embed = nn.Embedding(max_len, d_model) |
|
self.norm = LayerNormalization(d_model) |
|
|
|
def forward(self, x): |
|
seq_len = x.size(1) |
|
pos = torch.arange(seq_len, dtype=torch.long, device=x.device) |
|
pos = pos.unsqueeze(0).expand_as(x[:, :, 0]) |
|
tok_emb = self.proj(x.float()) |
|
embedding = tok_emb + self.pos_embed(pos) |
|
return self.norm(embedding) |
|
|
|
class ScaledDotProductAttention(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, Q, K, V): |
|
scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(D_K) |
|
attn = F.softmax(scores, dim=-1) |
|
context = torch.matmul(attn, V) |
|
return context, attn |
|
|
|
class MultiHeadAttention(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.W_Q = nn.Linear(D_MODEL, D_K * N_HEADS) |
|
self.W_K = nn.Linear(D_MODEL, D_K * N_HEADS) |
|
self.W_V = nn.Linear(D_MODEL, D_V * N_HEADS) |
|
self.linear = nn.Linear(N_HEADS * D_V, D_MODEL) |
|
self.norm = LayerNormalization(D_MODEL) |
|
self.dropout = nn.Dropout(DROPOUT) |
|
|
|
def forward(self, Q, K, V): |
|
residual, batch_size = Q, Q.size(0) |
|
q_s = self.W_Q(Q).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2) |
|
k_s = self.W_K(K).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2) |
|
v_s = self.W_V(V).view(batch_size, -1, N_HEADS, D_V).transpose(1, 2) |
|
|
|
context, attn = ScaledDotProductAttention()(q_s, k_s, v_s) |
|
output = context.transpose(1, 2).contiguous().view(batch_size, -1, N_HEADS * D_V) |
|
output = self.linear(output) |
|
return residual + self.dropout(output), attn |
|
|
|
class PoswiseFeedForwardNet(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.fc1 = nn.Linear(D_MODEL, D_FF) |
|
self.fc2 = nn.Linear(D_FF, D_MODEL) |
|
self.dropout = nn.Dropout(DROPOUT) |
|
self.norm = LayerNormalization(D_MODEL) |
|
|
|
def forward(self, x): |
|
output = self.fc2(self.dropout(F.relu(self.fc1(x)))) |
|
return x + self.dropout(output) |
|
|
|
class EncoderLayer(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.enc_self_attn = MultiHeadAttention() |
|
self.pos_ffn = PoswiseFeedForwardNet() |
|
self.norm = LayerNormalization(D_MODEL) |
|
|
|
def forward(self, enc_inputs): |
|
attn_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs) |
|
attn_outputs = self.norm(attn_outputs) |
|
enc_outputs = self.pos_ffn(attn_outputs) |
|
return enc_outputs, attn |
|
|
|
class LWM(nn.Module): |
|
def __init__(self, element_length=16, d_model=64, max_len=129, n_layers=12): |
|
super().__init__() |
|
|
|
self.embedding = Embedding(element_length, d_model, max_len) |
|
self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)]) |
|
self.linear = nn.Linear(d_model, d_model) |
|
self.norm = LayerNormalization(d_model) |
|
|
|
embed_weight = self.embedding.proj.weight |
|
d_model, n_dim = embed_weight.size() |
|
self.decoder = nn.Linear(d_model, n_dim, bias=False) |
|
self.decoder.weight = nn.Parameter(embed_weight.transpose(0, 1)) |
|
self.decoder_bias = nn.Parameter(torch.zeros(n_dim)) |
|
|
|
def forward(self, input_ids, masked_pos): |
|
output = self.embedding(input_ids) |
|
|
|
for layer in self.layers: |
|
output, _ = layer(output) |
|
|
|
masked_pos = masked_pos.long()[:, :, None].expand(-1, -1, output.size(-1)) |
|
h_masked = torch.gather(output, 1, masked_pos) |
|
h_masked = self.norm(F.relu(self.linear(h_masked))) |
|
logits_lm = self.decoder(h_masked) + self.decoder_bias |
|
|
|
return logits_lm, output |
|
|
|
def load_model(model, model_path, device=None): |
|
""" |
|
Load a pre-trained LWM model from a checkpoint. |
|
|
|
Args: |
|
model_path (str): Path to the checkpoint file. |
|
device (torch.device, optional): Device to load the model onto. |
|
|
|
Returns: |
|
LWM: Loaded model instance. |
|
""" |
|
if device is None: |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
state_dict = torch.load(model_path, map_location=device) |
|
model.load_state_dict(state_dict) |
|
model.to(device) |
|
return model |
|
|
|
|
|
if __name__ == "__main__": |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model_name = 'model_weights.pth' |
|
model_path = f'models/{model_name}' |
|
|
|
model = LWM() |
|
|
|
model = load_model(model, model_path, device) |
|
print(f"Model loaded successfully on {device}") |
|
print(f"Model parameters: {sum(p.numel() for p in model.parameters())}") |