lwm / model.py
Sadjad Alikhani
Upload model.py
6647b6a verified
raw
history blame
7.58 kB
# -*- coding: utf-8 -*-
"""
Created on Sun Sep 15 19:55:23 2024
@author: salikha4
"""
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from inference import *
from load_data import load_DeepMIMO_data
from input_preprocess import *
from lwm_model import LWM, load_model
ELEMENT_LENGTH = 16
D_MODEL = 64
MAX_LEN = 129
N_LAYERS = 12
N_HEADS = 12
D_FF = D_MODEL * 4
D_K = D_MODEL // N_HEADS
D_V = D_MODEL // N_HEADS
DROPOUT = 0.1
class LayerNormalization(nn.Module):
def __init__(self, d_model: int, eps: float = 1e-6) -> None:
super().__init__()
self.eps = eps
self.alpha = nn.Parameter(torch.ones(d_model))
self.bias = nn.Parameter(torch.zeros(d_model))
def forward(self, x):
mean = x.mean(dim=-1, keepdim=True)
std = x.std(dim=-1, keepdim=True)
return self.alpha * (x - mean) / (std + self.eps) + self.bias
class Embedding(nn.Module):
def __init__(self, element_length, d_model, max_len):
super().__init__()
self.element_length = element_length
self.d_model = d_model
self.proj = nn.Linear(element_length, d_model)
self.pos_embed = nn.Embedding(max_len, d_model)
self.norm = LayerNormalization(d_model)
def forward(self, x):
seq_len = x.size(1)
pos = torch.arange(seq_len, dtype=torch.long, device=x.device)
pos = pos.unsqueeze(0).expand_as(x[:, :, 0])
tok_emb = self.proj(x.float())
embedding = tok_emb + self.pos_embed(pos)
return self.norm(embedding)
class ScaledDotProductAttention(nn.Module):
def __init__(self):
super().__init__()
def forward(self, Q, K, V):
scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(D_K)
attn = F.softmax(scores, dim=-1)
context = torch.matmul(attn, V)
return context, attn
class MultiHeadAttention(nn.Module):
def __init__(self):
super().__init__()
self.W_Q = nn.Linear(D_MODEL, D_K * N_HEADS)
self.W_K = nn.Linear(D_MODEL, D_K * N_HEADS)
self.W_V = nn.Linear(D_MODEL, D_V * N_HEADS)
self.linear = nn.Linear(N_HEADS * D_V, D_MODEL)
self.norm = LayerNormalization(D_MODEL)
self.dropout = nn.Dropout(DROPOUT)
def forward(self, Q, K, V):
residual, batch_size = Q, Q.size(0)
q_s = self.W_Q(Q).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2)
k_s = self.W_K(K).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2)
v_s = self.W_V(V).view(batch_size, -1, N_HEADS, D_V).transpose(1, 2)
context, attn = ScaledDotProductAttention()(q_s, k_s, v_s)
output = context.transpose(1, 2).contiguous().view(batch_size, -1, N_HEADS * D_V)
output = self.linear(output)
return residual + self.dropout(output), attn #residual + self.dropout(output), attn
class PoswiseFeedForwardNet(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(D_MODEL, D_FF)
self.fc2 = nn.Linear(D_FF, D_MODEL)
self.dropout = nn.Dropout(DROPOUT)
self.norm = LayerNormalization(D_MODEL)
def forward(self, x):
output = self.fc2(self.dropout(F.relu(self.fc1(x))))
return x + self.dropout(output) #x + self.dropout(output)
class EncoderLayer(nn.Module):
def __init__(self):
super().__init__()
self.enc_self_attn = MultiHeadAttention()
self.pos_ffn = PoswiseFeedForwardNet()
self.norm = LayerNormalization(D_MODEL)
def forward(self, enc_inputs):
attn_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs)
attn_outputs = self.norm(attn_outputs)
enc_outputs = self.pos_ffn(attn_outputs)
return enc_outputs, attn
# class LWM(torch.nn.Module):
# def __init__(self, element_length=16, d_model=64, max_len=129, n_layers=12):
# super().__init__()
# self.embedding = Embedding(element_length, d_model, max_len)
# self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])
# self.linear = nn.Linear(d_model, d_model)
# self.norm = LayerNormalization(d_model)
# embed_weight = self.embedding.proj.weight
# d_model, n_dim = embed_weight.size()
# self.decoder = nn.Linear(d_model, n_dim, bias=False)
# self.decoder.weight = nn.Parameter(embed_weight.transpose(0, 1))
# self.decoder_bias = nn.Parameter(torch.zeros(n_dim))
# @classmethod
# def from_pretrained(cls, ckpt_name='model_weights.pth', device='cuda'):
# # Define model
# model = cls().to(device)
# # Download the model weights (from a remote or local repository)
# ckpt_path = f'https://huggingface.co/sadjadalikhani/LWM/resolve/main/{ckpt_name}'
# # Load the model weights
# model.load_state_dict(torch.hub.load_state_dict_from_url(ckpt_path, map_location=device))
# print(f"Model loaded successfully from {ckpt_path} to {device}")
# return model
# def forward(self, input_ids, masked_pos):
# output = self.embedding(input_ids)
# for layer in self.layers:
# output, _ = layer(output)
# masked_pos = masked_pos.long()[:, :, None].expand(-1, -1, output.size(-1))
# h_masked = torch.gather(output, 1, masked_pos)
# h_masked = self.norm(F.relu(self.linear(h_masked)))
# logits_lm = self.decoder(h_masked) + self.decoder_bias
# return logits_lm, output
from huggingface_hub import hf_hub_download
import torch
class LWM(torch.nn.Module):
def __init__(self, element_length=16, d_model=64, max_len=129, n_layers=12):
super().__init__()
# Model architecture...
self.embedding = Embedding(element_length, d_model, max_len)
self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])
self.linear = nn.Linear(d_model, d_model)
self.norm = LayerNormalization(d_model)
embed_weight = self.embedding.proj.weight
d_model, n_dim = embed_weight.size()
self.decoder = nn.Linear(d_model, n_dim, bias=False)
self.decoder.weight = nn.Parameter(embed_weight.transpose(0, 1))
self.decoder_bias = nn.Parameter(torch.zeros(n_dim))
@classmethod
def from_pretrained(cls, ckpt_name='model_weights.pth', device='cuda', use_auth_token=None):
# Define model
model = cls().to(device)
# Download model weights using Hugging Face Hub
ckpt_path = hf_hub_download(repo_id="sadjadalikhani/LWM", filename=ckpt_name, use_auth_token=use_auth_token)
# Load the model weights
model.load_state_dict(torch.load(ckpt_path, map_location=device))
print(f"Model loaded successfully from {ckpt_path} to {device}")
return model
def forward(self, input_ids, masked_pos):
# Define the forward pass
output = self.embedding(input_ids)
for layer in self.layers:
output, _ = layer(output)
masked_pos = masked_pos.long()[:, :, None].expand(-1, -1, output.size(-1))
h_masked = torch.gather(output, 1, masked_pos)
h_masked = self.norm(F.relu(self.linear(h_masked)))
logits_lm = self.decoder(h_masked) + self.decoder_bias
return logits_lm, output