See axolotl config
axolotl version: 0.4.1
base_model: NousResearch/Llama-3.2-1B
batch_size: 32
bf16: true
chat_template: tokenizer_default_fallback_alpaca
datasets:
- data_files:
- f51beb4c568b9128_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f51beb4c568b9128_train_data.json
type:
field_input: keywords
field_instruction: idea
field_output: full_response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
eval_steps: 20
flash_attention: true
gpu_memory_limit: 80GiB
gradient_checkpointing: true
group_by_length: true
hub_model_id: willtensora/0c2649cc-2fe7-4e88-b672-6da1fee4001f
hub_strategy: checkpoint
learning_rate: 0.0002
logging_steps: 10
lr_scheduler: cosine
max_steps: 2500
micro_batch_size: 4
model_type: AutoModelForCausalLM
optimizer: adamw_bnb_8bit
output_dir: /workspace/axolotl/configs
pad_to_sequence_len: true
resize_token_embeddings_to_32x: false
sample_packing: false
save_steps: 40
save_total_limit: 1
sequence_len: 2048
special_tokens:
pad_token: <|end_of_text|>
tokenizer_type: PreTrainedTokenizerFast
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: ''
wandb_mode: online
wandb_name: NousResearch/Llama-3.2-1B-/workspace/input_data/f51beb4c568b9128_train_data.json
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_ratio: 0.05
xformers_attention: true
0c2649cc-2fe7-4e88-b672-6da1fee4001f
This model is a fine-tuned version of NousResearch/Llama-3.2-1B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0849
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 12
- training_steps: 258
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0005 | 1 | 0.2074 |
0.5472 | 0.0097 | 20 | 0.1746 |
0.3199 | 0.0194 | 40 | 0.2036 |
0.2013 | 0.0291 | 60 | 0.1772 |
0.0903 | 0.0388 | 80 | 0.1702 |
0.0875 | 0.0485 | 100 | 0.2040 |
0.1425 | 0.0582 | 120 | 0.1392 |
0.1982 | 0.0679 | 140 | 0.1194 |
0.1372 | 0.0776 | 160 | 0.1014 |
0.0278 | 0.0873 | 180 | 0.0952 |
0.0248 | 0.0970 | 200 | 0.0893 |
0.1051 | 0.1067 | 220 | 0.0875 |
0.0649 | 0.1164 | 240 | 0.0849 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for willtensora/0c2649cc-2fe7-4e88-b672-6da1fee4001f
Base model
NousResearch/Llama-3.2-1B