Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
batch_size: 32
bf16: true
chat_template: tokenizer_default_fallback_alpaca
datasets:
- data_files:
  - f4a61305a746447c_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/f4a61305a746447c_train_data.json
  type:
    field_instruction: sentence1
    field_output: sentence2
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
eval_steps: 20
flash_attention: true
gpu_memory_limit: 80GiB
gradient_checkpointing: true
group_by_length: true
hub_model_id: willtensora/dab16ec4-4ddf-4ee5-8888-3dc2a83f0f86
hub_strategy: checkpoint
learning_rate: 0.0002
logging_steps: 10
lr_scheduler: cosine
max_steps: 2500
micro_batch_size: 4
model_type: AutoModelForCausalLM
optimizer: adamw_bnb_8bit
output_dir: /workspace/axolotl/configs
pad_to_sequence_len: true
resize_token_embeddings_to_32x: false
sample_packing: false
save_steps: 40
save_total_limit: 1
sequence_len: 2048
tokenizer_type: LlamaTokenizerFast
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: ''
wandb_mode: online
wandb_name: trl-internal-testing/tiny-random-LlamaForCausalLM-/workspace/input_data/f4a61305a746447c_train_data.json
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_ratio: 0.05
xformers_attention: true

dab16ec4-4ddf-4ee5-8888-3dc2a83f0f86

This model is a fine-tuned version of trl-internal-testing/tiny-random-LlamaForCausalLM on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • training_steps: 13

Training results

Training Loss Epoch Step Validation Loss
No log 0.01 1 10.3686

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
2
Safetensors
Model size
1.03M params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for willtensora/dab16ec4-4ddf-4ee5-8888-3dc2a83f0f86

Finetuned
(9)
this model