distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.87
  • Loss: 0.9175

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 17

Training results

Training Loss Epoch Step Accuracy Validation Loss
2.2295 1.0 113 0.4 2.1501
1.7373 2.0 226 0.6 1.6194
1.3497 3.0 339 0.72 1.1717
1.0135 4.0 452 0.71 1.0361
0.6951 5.0 565 0.77 0.7724
0.4279 6.0 678 0.76 0.7731
0.5178 7.0 791 0.82 0.6048
0.141 8.0 904 0.79 0.7486
0.2459 9.0 1017 0.85 0.6326
0.0331 10.0 1130 0.82 0.8706
0.0214 11.0 1243 0.81 1.0099
0.0744 12.0 1356 0.8 1.0210
0.0043 13.0 1469 0.82 0.9894
0.0032 14.0 1582 0.82 0.9803
0.0025 15.0 1695 0.83 1.0476
0.0021 16.0 1808 0.82 1.0483
0.0183 17.0 1921 0.87 0.9175

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1
  • Datasets 2.14.0
  • Tokenizers 0.13.3
Downloads last month
162
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for wilson-wei/distilhubert-finetuned-gtzan

Finetuned
(430)
this model

Dataset used to train wilson-wei/distilhubert-finetuned-gtzan

Evaluation results