# albert-chinese-large-qa | |
Albert large QA model pretrained from baidu webqa and baidu dureader datasets. | |
## Data source | |
+ baidu webqa 1.0 | |
+ baidu dureader | |
## Traing Method | |
We combined the two datasets together and created a new dataset in squad format, including 705139 samples for training and 69638 samples for validation. | |
We finetune the model based on the albert chinese large model. | |
## Hyperparams | |
+ learning_rate 1e-5 | |
+ max_seq_length 512 | |
+ max_query_length 50 | |
+ max_answer_length 300 | |
+ doc_stride 256 | |
+ num_train_epochs 2 | |
+ warmup_steps 1000 | |
+ per_gpu_train_batch_size 8 | |
+ gradient_accumulation_steps 3 | |
+ n_gpu 2 (Nvidia Tesla P100) | |
## Usage | |
``` | |
from transformers import AutoModelForQuestionAnswering, BertTokenizer | |
model = AutoModelForQuestionAnswering.from_pretrained('wptoux/albert-chinese-large-qa') | |
tokenizer = BertTokenizer.from_pretrained('wptoux/albert-chinese-large-qa') | |
``` | |
***Important: use BertTokenizer*** | |
## MoreInfo | |
Please visit https://github.com/wptoux/albert-chinese-large-webqa for details. | |