File size: 19,640 Bytes
badfcff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:550152
- loss:CosineSimilarityLoss
base_model: x2bee/KoModernBERT-base-mlm_v02
widget:
- source_sentence:  남자가 다리가 허벅지에 있고 자전거 헬멧이   뒤에 있는 여자 옆에 앉아 있다.
  sentences:
  -  어린 소년은 야외에서 장난감 비행기를 날리고 있었다.
  - 사람들은   보기 위해  있다.
  - 남자가 여자의 허벅지에 다리를 얹고 있다.
- source_sentence: 도끼로 구조물을 무너뜨리는 남자.
  sentences:
  - 소년이 당나귀를 타고 있다.
  - 남자는 새들의 사진을 찍을 준비를 한다.
  -  남자가 수갑을   감옥을 통과하고 있다.
- source_sentence: 오토바이를  스폰서를 입은 남자가 손을 들고 오토바이에 앉아 있다.
  sentences:
  - 남자는 오토바이 경주를 준비한다.
  -  여성이 라켓을 허공에 대고 라켓  코트 모퉁이를 가로질러 걸어간다.
  - 어떤 남자들은 발레리나 옷을 입고 있다.
- source_sentence: 경기를   있는 스포츠 바.
  sentences:
  - 럭비를 하는 사람
  - 스포츠 바는 게임을 보기에 인기 있는 곳이다.
  -  여자 모두 들고 있는 안경으로 술을 마시고 있다.
- source_sentence:  여자와 소년이 경찰 오토바이에 앉아 있다.
  sentences:
  - 여자와 소년이 밖에 있다.
  -  남자가 총으로 아기를 쐈다.
  -  남자가  위에 밧줄을 매고 있다.
datasets:
- x2bee/Korean_NLI_dataset
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_euclidean
- spearman_euclidean
- pearson_manhattan
- spearman_manhattan
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
model-index:
- name: SentenceTransformer based on x2bee/KoModernBERT-base-mlm_v02
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev
      type: sts_dev
    metrics:
    - type: pearson_cosine
      value: 0.6374494482799764
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6328250180270107
      name: Spearman Cosine
    - type: pearson_euclidean
      value: 0.6326629869012427
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.612232056020112
      name: Spearman Euclidean
    - type: pearson_manhattan
      value: 0.6346199347508898
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.615448809374675
      name: Spearman Manhattan
    - type: pearson_dot
      value: 0.5941390124399774
      name: Pearson Dot
    - type: spearman_dot
      value: 0.5741507526998049
      name: Spearman Dot
    - type: pearson_max
      value: 0.6374494482799764
      name: Pearson Max
    - type: spearman_max
      value: 0.6328250180270107
      name: Spearman Max
---

# SentenceTransformer based on x2bee/KoModernBERT-base-mlm_v02

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [x2bee/KoModernBERT-base-mlm_v02](https://huggingface.co/x2bee/KoModernBERT-base-mlm_v02) on the [korean_nli_dataset](https://huggingface.co/datasets/x2bee/Korean_NLI_dataset) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [x2bee/KoModernBERT-base-mlm_v02](https://huggingface.co/x2bee/KoModernBERT-base-mlm_v02) <!-- at revision e70a0396ecbe3f187762e0cb9ee5952fa42e6bb9 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [korean_nli_dataset](https://huggingface.co/datasets/x2bee/Korean_NLI_dataset)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("x2bee/KoModernBERT_SBERT_compare_mlmlv5")
# Run inference
sentences = [
    '한 여자와 소년이 경찰 오토바이에 앉아 있다.',
    '여자와 소년이 밖에 있다.',
    '한 남자가 물 위에 밧줄을 매고 있다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity

* Dataset: `sts_dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| pearson_cosine     | 0.6374     |
| spearman_cosine    | 0.6328     |
| pearson_euclidean  | 0.6327     |
| spearman_euclidean | 0.6122     |
| pearson_manhattan  | 0.6346     |
| spearman_manhattan | 0.6154     |
| pearson_dot        | 0.5941     |
| spearman_dot       | 0.5742     |
| pearson_max        | 0.6374     |
| **spearman_max**   | **0.6328** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### korean_nli_dataset

* Dataset: [korean_nli_dataset](https://huggingface.co/datasets/x2bee/Korean_NLI_dataset) at [51cc968](https://huggingface.co/datasets/x2bee/Korean_NLI_dataset/tree/51cc968560f9600460d8af859c5b9a94849790a4)
* Size: 550,152 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | score                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                          |
  | details | <ul><li>min: 8 tokens</li><li>mean: 21.76 tokens</li><li>max: 76 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.36 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.49</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                                    | sentence2                                                                    | score            |
  |:-----------------------------------------------------------------------------|:-----------------------------------------------------------------------------|:-----------------|
  | <code>몸에 맞지 않는 노란색 셔츠와 파란색 플래드 스커트를 입은 나이든 여성이 두 개의 통 옆에 앉아 있다.</code>       | <code>여자가 역기를 들어올리고 있다.</code>                                               | <code>0.0</code> |
  | <code>갈색 코트를 입은 선글라스를 쓴 한 남성이 담배를 피우며 손님들이 길거리 스탠드에서 물건을 구입하자 코를 긁는다.</code> | <code>갈색 코트를 입은 선글라스를 쓴 청년이 담배를 피우며 손님들이 스테이트 스탠드에서 구매하고 있을 때 코를 긁는다.</code> | <code>0.5</code> |
  | <code>소녀들은 물을 뿌리며 놀면서 킥킥 웃는다.</code>                                         | <code>수도 본관이 고장나서 큰길이 범람했다.</code>                                           | <code>0.0</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```

### Evaluation Dataset

#### korean_nli_dataset

* Dataset: [korean_nli_dataset](https://huggingface.co/datasets/x2bee/Korean_NLI_dataset) at [51cc968](https://huggingface.co/datasets/x2bee/Korean_NLI_dataset/tree/51cc968560f9600460d8af859c5b9a94849790a4)
* Size: 550,152 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | score                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                          |
  | details | <ul><li>min: 4 tokens</li><li>mean: 21.88 tokens</li><li>max: 76 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.14 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.52</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                    | sentence2                                 | score            |
  |:-------------------------------------------------------------|:------------------------------------------|:-----------------|
  | <code>한 역사학자와 그의 친구는 연구를 위해 더 많은 화석을 찾기 위해 광산을 파고 있다.</code> | <code>역사가는 공부를 위해 친구와 함께 땅을 파고 있다.</code> | <code>0.5</code> |
  | <code>소년은 회전목마에 도움을 받는다.</code>                              | <code>소년이 당나귀를 타고 있다.</code>              | <code>0.0</code> |
  | <code>세탁실에서 사색적인 포즈를 취하고 있는 남자.</code>                       | <code>한 남자가 파티오 밖에 있다.</code>             | <code>0.0</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `gradient_accumulation_steps`: 2
- `learning_rate`: 1e-05
- `num_train_epochs`: 2
- `warmup_ratio`: 0.3
- `push_to_hub`: True
- `hub_model_id`: x2bee/KoModernBERT_SBERT_compare_mlmlv5
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 1e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.3
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: x2bee/KoModernBERT_SBERT_compare_mlmlv5
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss | sts_dev_spearman_max |
|:------:|:----:|:-------------:|:---------------:|:--------------------:|
| 0      | 0    | -             | -               | 0.3994               |
| 0.0980 | 100  | 0.3216        | -               | -                    |
| 0.1960 | 200  | 0.2019        | -               | -                    |
| 0.2940 | 300  | 0.1451        | -               | -                    |
| 0.3920 | 400  | 0.1327        | -               | -                    |
| 0.4900 | 500  | 0.1231        | -               | -                    |
| 0.5879 | 600  | 0.1138        | -               | -                    |
| 0.6859 | 700  | 0.1091        | -               | -                    |
| 0.7839 | 800  | 0.106         | -               | -                    |
| 0.8819 | 900  | 0.1047        | -               | -                    |
| 0.9799 | 1000 | 0.1029        | -               | -                    |
| 1.0    | 1021 | -             | 0.1003          | 0.6352               |
| 1.0774 | 1100 | 0.0999        | -               | -                    |
| 1.1754 | 1200 | 0.0994        | -               | -                    |
| 1.2734 | 1300 | 0.0989        | -               | -                    |
| 1.3714 | 1400 | 0.0974        | -               | -                    |
| 1.4694 | 1500 | 0.0975        | -               | -                    |
| 1.5674 | 1600 | 0.0945        | -               | -                    |
| 1.6654 | 1700 | 0.0933        | -               | -                    |
| 1.7634 | 1800 | 0.0922        | -               | -                    |
| 1.8613 | 1900 | 0.0928        | -               | -                    |
| 1.9593 | 2000 | 0.0928        | -               | -                    |
| 1.9985 | 2040 | -             | 0.0955          | 0.6328               |


### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->