metadata
language:
- multilingual
license: apache-2.0
base_model: openai/whisper-medium
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: model trenovan na en de en similar setu, nastaveni jazyka de
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: xbilek25/train_set_1st_1000_de_en_de
type: mozilla-foundation/common_voice_11_0
args: 'config: ende, split: train'
metrics:
- name: Wer
type: wer
value: 18.290496114763897
model trenovan na en de en similar setu, nastaveni jazyka de
This model is a fine-tuned version of openai/whisper-medium on the xbilek25/train_set_1st_1000_de_en_de dataset. It achieves the following results on the evaluation set:
- Loss: 0.3156
- Wer: 18.2905
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1
- training_steps: 2000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0119 | 3.12 | 1000 | 0.2831 | 20.0106 |
0.0015 | 7.12 | 2000 | 0.3156 | 18.2905 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.15.2