library_name: transformers
license: llama3.1
base_model:
- meta-llama/Llama-3.1-405B-Instruct
This model has been xMADified!
This repository contains meta-llama/Llama-3.1-405B-Instruct
quantized from 16-bit floats to 4-bit integers, using xMAD.ai proprietary technology.
Why should I use this model?
Accuracy: This xMADified model is the best quantized version of the
meta-llama/Llama-3.1-405B-Instruct
model (200 GB only). See Table 1 below for model quality benchmarks.Memory-efficiency: The full-precision model is around 800 GB, while this xMADified model is only around 200 GB, making it feasible to run on a 4x 80GB GPUs.
Fine-tuning: These models are fine-tunable over the same reduced (4x 80GB GPUs) hardware in mere 3-clicks. Watch our product demo here
Table 1: xMAD vs. Hugging Quants
Model | MMLU STEM | MMLU Humanities | MMLU Social Sciences | MMLU Other | LAMBADA Standard | LAMBADA OpenAI | WinoGrande | PIQA |
---|---|---|---|---|---|---|---|---|
xmadai/Llama-3.1-405B-Instruct-xMADai-INT4 (this model) | 82.68 | 83.21 | 90.58 | 87.71 | 74.71 | 77.55 | 82.32 | 83.35 |
hugging-quants/Meta-Llama-3.1-405B-Instruct-GPTQ-INT4 | 82.34 | 82.64 | 90.45 | 87.51 | 73.41 | 76.96 | 81.77 | 82.75 |
How to Run Model
Loading the model checkpoint of this xMADified model requires around 200 GiB of VRAM. Hence it can be efficiently run on 4x 80GB or 8x 40GB GPUs.
Package prerequisites:
- Run the following *commands to install the required packages.
pip install torch==2.4.0 # Run following if you have CUDA version 11.8: pip install torch==2.4.0 --index-url https://download.pytorch.org/whl/cu118
pip install transformers accelerate optimum
pip install -vvv --no-build-isolation "git+https://github.com/PanQiWei/[email protected]"
Sample Inference Code
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
model_id = "xmadai/Llama-3.1-405B-Instruct-xMADai-INT4"
prompt = [
{"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
{"role": "user", "content": "What's Deep Learning?"},
]
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False)
inputs = tokenizer.apply_chat_template(
prompt,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True,
).to("cuda")
model = AutoGPTQForCausalLM.from_quantized(
model_id,
device_map='auto',
trust_remote_code=True,
)
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=1024)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
Citation
If you found this model useful, please cite our research paper.
@article{zhang2024leanquant,
title={LeanQuant: Accurate and Scalable Large Language Model Quantization with Loss-error-aware Grid},
author={Zhang, Tianyi and Shrivastava, Anshumali},
journal={arXiv preprint arXiv:2407.10032},
year={2024},
url={https://arxiv.org/abs/2407.10032},
}
Contact Us
For additional xMADified models, access to fine-tuning, and general questions, please contact us at [email protected] and join our waiting list.