Generic badge

Model

llava-phi-3-mini is a LLaVA model fine-tuned from microsoft/Phi-3-mini-4k-instruct and CLIP-ViT-Large-patch14-336 with ShareGPT4V-PT and InternVL-SFT by XTuner.

Note: This model is in official LLaVA format.

Resources:

Details

Model Visual Encoder Projector Resolution Pretraining Strategy Fine-tuning Strategy Pretrain Dataset Fine-tune Dataset Pretrain Epoch Fine-tune Epoch
LLaVA-v1.5-7B CLIP-L MLP 336 Frozen LLM, Frozen ViT Full LLM, Frozen ViT LLaVA-PT (558K) LLaVA-Mix (665K) 1 1
LLaVA-Llama-3-8B CLIP-L MLP 336 Frozen LLM, Frozen ViT Full LLM, LoRA ViT LLaVA-PT (558K) LLaVA-Mix (665K) 1 1
LLaVA-Llama-3-8B-v1.1 CLIP-L MLP 336 Frozen LLM, Frozen ViT Full LLM, LoRA ViT ShareGPT4V-PT (1246K) InternVL-SFT (1268K) 1 1
LLaVA-Phi-3-mini CLIP-L MLP 336 Frozen LLM, Frozen ViT Full LLM, Full ViT ShareGPT4V-PT (1246K) InternVL-SFT (1268K) 1 2

Results

Image
Model MMBench Test (EN) MMMU Val SEED-IMG AI2D Test ScienceQA Test HallusionBench aAcc POPE GQA TextVQA MME MMStar
LLaVA-v1.5-7B 66.5 35.3 60.5 54.8 70.4 44.9 85.9 62.0 58.2 1511/348 30.3
LLaVA-Llama-3-8B 68.9 36.8 69.8 60.9 73.3 47.3 87.2 63.5 58.0 1506/295 38.2
LLaVA-Llama-3-8B-v1.1 72.3 37.1 70.1 70.0 72.9 47.7 86.4 62.6 59.0 1469/349 45.1
LLaVA-Phi-3-mini 69.2 41.4 70.0 69.3 73.7 49.8 87.3 61.5 57.8 1477/313 43.7

Quickstart

Chat by LLaVA official library

  1. Install official LLaVA library
pip install git+https://github.com/haotian-liu/LLaVA.git
  1. Chat by below script
cli.py
import argparse
from io import BytesIO

import requests
import torch
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from llava.conversation import Conversation, SeparatorStyle
from llava.mm_utils import process_images, tokenizer_image_token
from llava.model import LlavaLlamaForCausalLM
from PIL import Image
from transformers import (AutoTokenizer, BitsAndBytesConfig, StoppingCriteria,
                          StoppingCriteriaList, TextStreamer)


def load_image(image_file):
    if image_file.startswith('http://') or image_file.startswith('https://'):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert('RGB')
    else:
        image = Image.open(image_file).convert('RGB')
    return image


class StopWordStoppingCriteria(StoppingCriteria):
    """StopWord stopping criteria."""

    def __init__(self, tokenizer, stop_word):
        self.tokenizer = tokenizer
        self.stop_word = stop_word
        self.length = len(self.stop_word)

    def __call__(self, input_ids, *args, **kwargs) -> bool:
        cur_text = self.tokenizer.decode(input_ids[0])
        cur_text = cur_text.replace('\r', '').replace('\n', '')
        return cur_text[-self.length:] == self.stop_word


def get_stop_criteria(tokenizer, stop_words=[]):
    stop_criteria = StoppingCriteriaList()
    for word in stop_words:
        stop_criteria.append(StopWordStoppingCriteria(tokenizer, word))
    return stop_criteria


def main(args):
    kwargs = {'device_map': args.device}
    if args.load_8bit:
        kwargs['load_in_8bit'] = True
    elif args.load_4bit:
        kwargs['load_in_4bit'] = True
        kwargs['quantization_config'] = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type='nf4')
    else:
        kwargs['torch_dtype'] = torch.float16

    tokenizer = AutoTokenizer.from_pretrained(args.model_path)
    model = LlavaLlamaForCausalLM.from_pretrained(
        args.model_path, low_cpu_mem_usage=True, **kwargs)
    vision_tower = model.get_vision_tower()
    if not vision_tower.is_loaded:
        vision_tower.load_model(device_map=args.device)
    image_processor = vision_tower.image_processor

    conv = Conversation(
        system=system='<|system|>\nAnswer the questions.',
        roles=('<|user|>\n', '<|assistant|>\n'),
        messages=[],
        offset=0,
        sep_style=SeparatorStyle.MPT,
        sep='<|end|>',
    )
    roles = conv.roles

    image = load_image(args.image_file)
    image_size = image.size
    image_tensor = process_images([image], image_processor, model.config)

    if type(image_tensor) is list:
        image_tensor = [
            image.to(model.device, dtype=torch.float16)
            for image in image_tensor
        ]
    else:
        image_tensor = image_tensor.to(model.device, dtype=torch.float16)

    while True:
        try:
            inp = input(f'{roles[0]}: ')
        except EOFError:
            inp = ''
        if not inp:
            print('exit...')
            break

        print(f'{roles[1]}: ', end='')

        if image is not None:
            inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
            image = None

        conv.append_message(conv.roles[0], inp)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()

        input_ids = tokenizer_image_token(
            prompt, tokenizer, IMAGE_TOKEN_INDEX,
            return_tensors='pt').unsqueeze(0).to(model.device)
        stop_criteria = get_stop_criteria(
            tokenizer=tokenizer, stop_words=[conv.sep])

        streamer = TextStreamer(
            tokenizer, skip_prompt=True, skip_special_tokens=True)

        with torch.inference_mode():
            output_ids = model.generate(
                input_ids,
                images=image_tensor,
                image_sizes=[image_size],
                do_sample=True if args.temperature > 0 else False,
                temperature=args.temperature,
                max_new_tokens=args.max_new_tokens,
                streamer=streamer,
                stopping_criteria=stop_criteria,
                use_cache=True)

        outputs = tokenizer.decode(output_ids[0]).strip()
        conv.messages[-1][-1] = outputs

        if args.debug:
            print('\n', {'prompt': prompt, 'outputs': outputs}, '\n')


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--model-path', type=str, default='xtuner/llava-llama-3-8b-v1_1-hf')
    parser.add_argument('--image-file', type=str, required=True)
    parser.add_argument('--device', type=str, default='auto')
    parser.add_argument('--temperature', type=float, default=0.2)
    parser.add_argument('--max-new-tokens', type=int, default=512)
    parser.add_argument('--load-8bit', action='store_true')
    parser.add_argument('--load-4bit', action='store_true')
    parser.add_argument('--debug', action='store_true')
    args = parser.parse_args()
    main(args)
python ./cli.py  --model-path xtuner/llava-phi-3-mini --image-file https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg  --load-4bit

Reproduce

Please refer to docs.

Citation

@misc{2023xtuner,
    title={XTuner: A Toolkit for Efficiently Fine-tuning LLM},
    author={XTuner Contributors},
    howpublished = {\url{https://github.com/InternLM/xtuner}},
    year={2023}
}
Downloads last month
61
Safetensors
Model size
4.14B params
Tensor type
F32
·
FP16
·
Inference Examples
Inference API (serverless) does not yet support xtuner models for this pipeline type.

Dataset used to train xtuner/llava-phi-3-mini

Collection including xtuner/llava-phi-3-mini