SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2 on the allstats-semantic-synthetic-dataset-v1 dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-semantic-base-v1")
# Run inference
sentences = [
'analisis kinerja ekspor indonesia feb 2014',
'Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Kelompok Komoditi dan Negara Februari 2014',
'Laporan Bulanan Data Sosial Ekonomi Januari 2019',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
allstats-semantic-base-v1-eval
andallstat-semantic-base-v1-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | allstats-semantic-base-v1-eval | allstat-semantic-base-v1-test |
---|---|---|
pearson_cosine | 0.9866 | 0.9877 |
spearman_cosine | 0.9033 | 0.9063 |
Training Details
Training Dataset
allstats-semantic-synthetic-dataset-v1
- Dataset: allstats-semantic-synthetic-dataset-v1 at d59a245
- Size: 123,640 training samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string float details - min: 6 tokens
- mean: 10.64 tokens
- max: 34 tokens
- min: 4 tokens
- mean: 14.06 tokens
- max: 76 tokens
- min: 0.0
- mean: 0.49
- max: 1.0
- Samples:
query doc label Gambaran umum karakteristik usaha di Indonesia
Statistik Karakteristik Usaha 2022/2023
0.9
Tabel data jumlah sekolah, guru, dan murid MA di bawah Kementerian Agama per provinsi.
Jumlah Sekolah, Guru, dan Murid Madrasah Aliyah (MA) di Bawah Kementerian Agama Menurut Provinsi, tahun ajaran 2005/2006-2015/2016
0.96
bagaimana kinerja sektor konstruksi indonesia di triwulan ketiga tahun 2008?
Statistik Restoran/Rumah Makan 2007
0.09
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
allstats-semantic-synthetic-dataset-v1
- Dataset: allstats-semantic-synthetic-dataset-v1 at d59a245
- Size: 26,494 evaluation samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string float details - min: 5 tokens
- mean: 10.48 tokens
- max: 34 tokens
- min: 5 tokens
- mean: 13.86 tokens
- max: 58 tokens
- min: 0.0
- mean: 0.49
- max: 1.0
- Samples:
query doc label Harga barang konsumsi Indonesia 2022: data per kota
Harga Konsumen Beberapa Barang Kelompok Makanan, Minuman, dan Tembakau 90 Kota di Indonesia 2022
0.92
data biaya hidup bali 2018
Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Kelompok Komoditi dan Negara, Maret 2018
0.1
ekspor barang indonesia november 2011: data lengkap
Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Kelompok Komoditi dan Negara Februari 2013
0.12
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 10warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | allstats-semantic-base-v1-eval_spearman_cosine | allstat-semantic-base-v1-test_spearman_cosine |
---|---|---|---|---|---|
0.1294 | 500 | 0.0454 | 0.0267 | 0.7374 | - |
0.2588 | 1000 | 0.0243 | 0.0205 | 0.7527 | - |
0.3882 | 1500 | 0.0199 | 0.0169 | 0.7720 | - |
0.5176 | 2000 | 0.0186 | 0.0164 | 0.7733 | - |
0.6470 | 2500 | 0.0179 | 0.0158 | 0.7806 | - |
0.7764 | 3000 | 0.0158 | 0.0155 | 0.7826 | - |
0.9058 | 3500 | 0.0159 | 0.0155 | 0.7771 | - |
1.0352 | 4000 | 0.0155 | 0.0143 | 0.7847 | - |
1.1646 | 4500 | 0.0133 | 0.0141 | 0.7935 | - |
1.2940 | 5000 | 0.0128 | 0.0132 | 0.7986 | - |
1.4234 | 5500 | 0.0121 | 0.0120 | 0.8148 | - |
1.5528 | 6000 | 0.012 | 0.0118 | 0.8030 | - |
1.6822 | 6500 | 0.0118 | 0.0121 | 0.8132 | - |
1.8116 | 7000 | 0.0119 | 0.0109 | 0.8130 | - |
1.9410 | 7500 | 0.0107 | 0.0108 | 0.8132 | - |
2.0704 | 8000 | 0.009 | 0.0098 | 0.8181 | - |
2.1998 | 8500 | 0.0082 | 0.0099 | 0.8221 | - |
2.3292 | 9000 | 0.008 | 0.0100 | 0.8221 | - |
2.4586 | 9500 | 0.008 | 0.0095 | 0.8302 | - |
2.5880 | 10000 | 0.0083 | 0.0090 | 0.8284 | - |
2.7174 | 10500 | 0.0084 | 0.0093 | 0.8261 | - |
2.8468 | 11000 | 0.0084 | 0.0089 | 0.8283 | - |
2.9762 | 11500 | 0.0083 | 0.0093 | 0.8259 | - |
3.1056 | 12000 | 0.0056 | 0.0083 | 0.8362 | - |
3.2350 | 12500 | 0.006 | 0.0081 | 0.8357 | - |
3.3644 | 13000 | 0.0057 | 0.0078 | 0.8381 | - |
3.4938 | 13500 | 0.006 | 0.0081 | 0.8399 | - |
3.6232 | 14000 | 0.0058 | 0.0078 | 0.8420 | - |
3.7526 | 14500 | 0.0068 | 0.0078 | 0.8303 | - |
3.8820 | 15000 | 0.0056 | 0.0072 | 0.8502 | - |
4.0114 | 15500 | 0.0054 | 0.0073 | 0.8483 | - |
4.1408 | 16000 | 0.004 | 0.0068 | 0.8565 | - |
4.2702 | 16500 | 0.0042 | 0.0069 | 0.8493 | - |
4.3996 | 17000 | 0.0043 | 0.0069 | 0.8507 | - |
4.5290 | 17500 | 0.0045 | 0.0069 | 0.8536 | - |
4.6584 | 18000 | 0.0042 | 0.0064 | 0.8602 | - |
4.7878 | 18500 | 0.0043 | 0.0065 | 0.8537 | - |
4.9172 | 19000 | 0.0039 | 0.0062 | 0.8623 | - |
5.0466 | 19500 | 0.0041 | 0.0065 | 0.8601 | - |
5.1760 | 20000 | 0.0032 | 0.0060 | 0.8643 | - |
5.3054 | 20500 | 0.0032 | 0.0064 | 0.8657 | - |
5.4348 | 21000 | 0.0032 | 0.0062 | 0.8669 | - |
5.5642 | 21500 | 0.0031 | 0.0065 | 0.8633 | - |
5.6936 | 22000 | 0.003 | 0.0059 | 0.8682 | - |
5.8230 | 22500 | 0.0032 | 0.0057 | 0.8713 | - |
5.9524 | 23000 | 0.0032 | 0.0057 | 0.8688 | - |
6.0818 | 23500 | 0.0026 | 0.0055 | 0.8772 | - |
6.2112 | 24000 | 0.0023 | 0.0056 | 0.8708 | - |
6.3406 | 24500 | 0.0029 | 0.0056 | 0.8734 | - |
6.4700 | 25000 | 0.0027 | 0.0054 | 0.8748 | - |
6.5994 | 25500 | 0.0022 | 0.0054 | 0.8827 | - |
6.7288 | 26000 | 0.0021 | 0.0053 | 0.8823 | - |
6.8582 | 26500 | 0.0021 | 0.0053 | 0.8832 | - |
6.9876 | 27000 | 0.0025 | 0.0052 | 0.8839 | - |
7.1170 | 27500 | 0.002 | 0.0051 | 0.8887 | - |
7.2464 | 28000 | 0.0017 | 0.0050 | 0.8869 | - |
7.3758 | 28500 | 0.0019 | 0.0052 | 0.8845 | - |
7.5052 | 29000 | 0.0017 | 0.0051 | 0.8897 | - |
7.6346 | 29500 | 0.0017 | 0.0051 | 0.8920 | - |
7.7640 | 30000 | 0.0018 | 0.0050 | 0.8889 | - |
7.8934 | 30500 | 0.0019 | 0.0050 | 0.8931 | - |
8.0228 | 31000 | 0.002 | 0.0049 | 0.8889 | - |
8.1522 | 31500 | 0.0014 | 0.0049 | 0.8912 | - |
8.2816 | 32000 | 0.0013 | 0.0049 | 0.8922 | - |
8.4110 | 32500 | 0.0014 | 0.0049 | 0.8947 | - |
8.5404 | 33000 | 0.0014 | 0.0049 | 0.8960 | - |
8.6698 | 33500 | 0.0014 | 0.0049 | 0.8972 | - |
8.7992 | 34000 | 0.0014 | 0.0048 | 0.8982 | - |
8.9286 | 34500 | 0.0013 | 0.0048 | 0.9003 | - |
9.0580 | 35000 | 0.0014 | 0.0048 | 0.9001 | - |
9.1874 | 35500 | 0.0012 | 0.0048 | 0.8995 | - |
9.3168 | 36000 | 0.0011 | 0.0048 | 0.9008 | - |
9.4462 | 36500 | 0.001 | 0.0047 | 0.9015 | - |
9.5756 | 37000 | 0.0011 | 0.0047 | 0.9026 | - |
9.7050 | 37500 | 0.0011 | 0.0047 | 0.9027 | - |
9.8344 | 38000 | 0.001 | 0.0047 | 0.9035 | - |
9.9638 | 38500 | 0.0011 | 0.0047 | 0.9033 | - |
10.0 | 38640 | - | - | - | 0.9063 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for yahyaabd/allstats-semantic-base-v1
Dataset used to train yahyaabd/allstats-semantic-base-v1
Evaluation results
- Pearson Cosine on allstats semantic base v1 evalself-reported0.987
- Spearman Cosine on allstats semantic base v1 evalself-reported0.903
- Pearson Cosine on allstat semantic base v1 testself-reported0.988
- Spearman Cosine on allstat semantic base v1 testself-reported0.906