metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:212917
- loss:CosineSimilarityLoss
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
widget:
- source_sentence: statistik neraca arus dana indonesia
sentences:
- Statistik Kelapa Sawit Indonesia 2012
- Distribusi Perdagangan Komoditas Kedelai Indonesia 2023
- Data Runtun Statistik Konstruksi 1990-2010
- source_sentence: >-
Seberapa besar kenaikan produksi IBS pada Triwulan IV Tahun 2013
dibandingkan Triwulan IV Tahun Sebelumnya?
sentences:
- Pertumbuhan PDB 2013 Mencapai 5,78 Persen
- >-
Statistik Komuter Gerbangkertosusila Hasil Survei Komuter
Gerbangkertosusila 2017
- >-
Statistik Penduduk Lanjut Usia Provinsi Jawa Timur 2010-Hasil Sensus
Penduduk 2010
- source_sentence: 'Penduduk Papua: migrasi 2015'
sentences:
- >-
Rata-rata Upah/Gaji Bersih sebulan Buruh/Karyawan Pegawai Menurut
Pendidikan Tertinggi dan jenis pekerjaan utama, 2019
- Statistik Pemotongan Ternak 2010 dan 2011
- >-
Statistik Harga Produsen Pertanian Sub Sektor Tanaman Pangan,
Hortikultura dan Perkebunan Rakyat 2010
- source_sentence: statistik konstruksi 2022
sentences:
- Studi Modal Sosial 2006
- BRS upah buruh agustus 2018
- Statistik Perdagangan Luar Negeri Indonesia Ekspor 2006 vol 1
- source_sentence: Statistik ekspor Indonesia Maret 2202
sentences:
- Produk Domestik Bruto Indonesia Triwulanan 2006-2010
- >-
Indeks Perilaku Anti Korupsi (IPAK) Indonesia 2023 sebesar 3,92, menurun
dibandingkan IPAK 2022
- >-
Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut HS, Januari
2023
datasets:
- yahyaabd/allstats-semantic-search-synthetic-dataset-v1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: >-
SentenceTransformer based on
sentence-transformers/paraphrase-multilingual-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstats semantic search v1 dev
type: allstats-semantic-search-v1-dev
metrics:
- type: pearson_cosine
value: 0.9894566758405579
name: Pearson Cosine
- type: spearman_cosine
value: 0.9072484378842124
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstat semantic search v1 test
type: allstat-semantic-search-v1-test
metrics:
- type: pearson_cosine
value: 0.9895284407960067
name: Pearson Cosine
- type: spearman_cosine
value: 0.9074137706349162
name: Spearman Cosine
SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2 on the allstats-semantic-search-synthetic-dataset-v1 dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-semantic-search-model-v1")
# Run inference
sentences = [
'Statistik ekspor Indonesia Maret 2202',
'Produk Domestik Bruto Indonesia Triwulanan 2006-2010',
'Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut HS, Januari 2023',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
allstats-semantic-search-v1-dev
andallstat-semantic-search-v1-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | allstats-semantic-search-v1-dev | allstat-semantic-search-v1-test |
---|---|---|
pearson_cosine | 0.9895 | 0.9895 |
spearman_cosine | 0.9072 | 0.9074 |
Training Details
Training Dataset
allstats-semantic-search-synthetic-dataset-v1
- Dataset: allstats-semantic-search-synthetic-dataset-v1 at 06f849a
- Size: 212,917 training samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string float details - min: 5 tokens
- mean: 11.48 tokens
- max: 29 tokens
- min: 4 tokens
- mean: 14.89 tokens
- max: 53 tokens
- min: 0.0
- mean: 0.52
- max: 1.0
- Samples:
query doc label ringkasan aktivitas badan pusat statistik tahun 2018
Statistik Harga Produsen sektor pertanian di indonesia 2008
0.1
indikator kesejahteraan petani rejang lebong 2015
Diagram Timbang Nilai Tukar Petani Kabupaten Rejang Lebong 2015
0.82
Berapa persen kenaikan kunjungan wisatawan mancanegara pada April 2024?
Indeks Perilaku Anti Korupsi (IPAK) Indonesia 2023 sebesar 3,92, menurun dibandingkan IPAK 2022
0.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
allstats-semantic-search-synthetic-dataset-v1
- Dataset: allstats-semantic-search-synthetic-dataset-v1 at 06f849a
- Size: 26,614 evaluation samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string float details - min: 5 tokens
- mean: 11.21 tokens
- max: 32 tokens
- min: 5 tokens
- mean: 14.41 tokens
- max: 54 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
query doc label Laporan bulanan ekonomi Indonesia bulan November 201
Laporan Bulanan Data Sosial Ekonomi November 2021
0.92
pekerjaan layak di indonesia tahun 2022: data dan analisis
Statistik Penduduk Lanjut Usia Provinsi Papua Barat 2010-Hasil Sensus Penduduk 2010
0.09
Tabel pendapatan rata-rata pekerja lepas berdasarkan provinsi dan pendidikan tahun 2021
Nilai Impor Kendaraan Bermotor Menurut Negara Asal Utama (Nilai CIF:juta US$), 2018-2023
0.1
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 4warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | allstats-semantic-search-v1-dev_spearman_cosine | allstat-semantic-search-v1-test_spearman_cosine |
---|---|---|---|---|---|
0.0376 | 250 | 0.0683 | 0.0432 | 0.6955 | - |
0.0751 | 500 | 0.0393 | 0.0322 | 0.7230 | - |
0.1127 | 750 | 0.0321 | 0.0270 | 0.7476 | - |
0.1503 | 1000 | 0.0255 | 0.0226 | 0.7789 | - |
0.1879 | 1250 | 0.024 | 0.0213 | 0.7683 | - |
0.2254 | 1500 | 0.022 | 0.0199 | 0.7727 | - |
0.2630 | 1750 | 0.0219 | 0.0195 | 0.7853 | - |
0.3006 | 2000 | 0.0202 | 0.0188 | 0.7795 | - |
0.3381 | 2250 | 0.0191 | 0.0187 | 0.7943 | - |
0.3757 | 2500 | 0.0198 | 0.0178 | 0.7842 | - |
0.4133 | 2750 | 0.0179 | 0.0184 | 0.7974 | - |
0.4509 | 3000 | 0.0179 | 0.0194 | 0.7810 | - |
0.4884 | 3250 | 0.0182 | 0.0168 | 0.8080 | - |
0.5260 | 3500 | 0.0174 | 0.0164 | 0.8131 | - |
0.5636 | 3750 | 0.0174 | 0.0154 | 0.8113 | - |
0.6011 | 4000 | 0.0169 | 0.0157 | 0.7981 | - |
0.6387 | 4250 | 0.0152 | 0.0146 | 0.8099 | - |
0.6763 | 4500 | 0.0148 | 0.0147 | 0.8091 | - |
0.7139 | 4750 | 0.0145 | 0.0145 | 0.8178 | - |
0.7514 | 5000 | 0.014 | 0.0139 | 0.8184 | - |
0.7890 | 5250 | 0.0145 | 0.0130 | 0.8166 | - |
0.8266 | 5500 | 0.0134 | 0.0129 | 0.8306 | - |
0.8641 | 5750 | 0.013 | 0.0122 | 0.8251 | - |
0.9017 | 6000 | 0.0136 | 0.0130 | 0.8265 | - |
0.9393 | 6250 | 0.0123 | 0.0126 | 0.8224 | - |
0.9769 | 6500 | 0.0113 | 0.0120 | 0.8305 | - |
1.0144 | 6750 | 0.0129 | 0.0117 | 0.8204 | - |
1.0520 | 7000 | 0.0106 | 0.0116 | 0.8284 | - |
1.0896 | 7250 | 0.01 | 0.0116 | 0.8303 | - |
1.1271 | 7500 | 0.0096 | 0.0110 | 0.8303 | - |
1.1647 | 7750 | 0.01 | 0.0113 | 0.8305 | - |
1.2023 | 8000 | 0.0116 | 0.0108 | 0.8300 | - |
1.2399 | 8250 | 0.0095 | 0.0104 | 0.8432 | - |
1.2774 | 8500 | 0.009 | 0.0104 | 0.8370 | - |
1.3150 | 8750 | 0.0101 | 0.0102 | 0.8434 | - |
1.3526 | 9000 | 0.01 | 0.0097 | 0.8450 | - |
1.3901 | 9250 | 0.0097 | 0.0103 | 0.8286 | - |
1.4277 | 9500 | 0.0092 | 0.0096 | 0.8393 | - |
1.4653 | 9750 | 0.0093 | 0.0089 | 0.8480 | - |
1.5029 | 10000 | 0.0088 | 0.0090 | 0.8439 | - |
1.5404 | 10250 | 0.0087 | 0.0089 | 0.8569 | - |
1.5780 | 10500 | 0.0082 | 0.0088 | 0.8488 | - |
1.6156 | 10750 | 0.009 | 0.0089 | 0.8493 | - |
1.6531 | 11000 | 0.0086 | 0.0086 | 0.8499 | - |
1.6907 | 11250 | 0.0076 | 0.0083 | 0.8600 | - |
1.7283 | 11500 | 0.0076 | 0.0081 | 0.8621 | - |
1.7659 | 11750 | 0.0079 | 0.0081 | 0.8611 | - |
1.8034 | 12000 | 0.0082 | 0.0085 | 0.8540 | - |
1.8410 | 12250 | 0.0074 | 0.0081 | 0.8620 | - |
1.8786 | 12500 | 0.007 | 0.0080 | 0.8639 | - |
1.9161 | 12750 | 0.0071 | 0.0083 | 0.8450 | - |
1.9537 | 13000 | 0.007 | 0.0076 | 0.8585 | - |
1.9913 | 13250 | 0.0072 | 0.0074 | 0.8640 | - |
2.0289 | 13500 | 0.0055 | 0.0069 | 0.8699 | - |
2.0664 | 13750 | 0.0056 | 0.0068 | 0.8673 | - |
2.1040 | 14000 | 0.0052 | 0.0066 | 0.8723 | - |
2.1416 | 14250 | 0.0059 | 0.0069 | 0.8644 | - |
2.1791 | 14500 | 0.0055 | 0.0068 | 0.8670 | - |
2.2167 | 14750 | 0.005 | 0.0065 | 0.8723 | - |
2.2543 | 15000 | 0.0053 | 0.0066 | 0.8766 | - |
2.2919 | 15250 | 0.0057 | 0.0065 | 0.8782 | - |
2.3294 | 15500 | 0.0053 | 0.0064 | 0.8749 | - |
2.3670 | 15750 | 0.0056 | 0.0070 | 0.8708 | - |
2.4046 | 16000 | 0.0058 | 0.0065 | 0.8731 | - |
2.4421 | 16250 | 0.0047 | 0.0064 | 0.8793 | - |
2.4797 | 16500 | 0.0049 | 0.0063 | 0.8801 | - |
2.5173 | 16750 | 0.0051 | 0.0063 | 0.8782 | - |
2.5549 | 17000 | 0.0053 | 0.0060 | 0.8799 | - |
2.5924 | 17250 | 0.0051 | 0.0059 | 0.8825 | - |
2.6300 | 17500 | 0.0048 | 0.0060 | 0.8761 | - |
2.6676 | 17750 | 0.0055 | 0.0055 | 0.8773 | - |
2.7051 | 18000 | 0.0045 | 0.0053 | 0.8833 | - |
2.7427 | 18250 | 0.0041 | 0.0053 | 0.8868 | - |
2.7803 | 18500 | 0.0051 | 0.0054 | 0.8811 | - |
2.8179 | 18750 | 0.004 | 0.0052 | 0.8881 | - |
2.8554 | 19000 | 0.0043 | 0.0053 | 0.8764 | - |
2.8930 | 19250 | 0.0047 | 0.0051 | 0.8874 | - |
2.9306 | 19500 | 0.0038 | 0.0051 | 0.8922 | - |
2.9681 | 19750 | 0.0047 | 0.0050 | 0.8821 | - |
3.0057 | 20000 | 0.0037 | 0.0048 | 0.8911 | - |
3.0433 | 20250 | 0.0031 | 0.0048 | 0.8911 | - |
3.0809 | 20500 | 0.0032 | 0.0046 | 0.8934 | - |
3.1184 | 20750 | 0.0034 | 0.0046 | 0.8942 | - |
3.1560 | 21000 | 0.0028 | 0.0045 | 0.8976 | - |
3.1936 | 21250 | 0.0034 | 0.0045 | 0.8932 | - |
3.2311 | 21500 | 0.003 | 0.0044 | 0.8959 | - |
3.2687 | 21750 | 0.0033 | 0.0044 | 0.8961 | - |
3.3063 | 22000 | 0.0029 | 0.0043 | 0.8995 | - |
3.3439 | 22250 | 0.0029 | 0.0044 | 0.8978 | - |
3.3814 | 22500 | 0.0027 | 0.0043 | 0.8998 | - |
3.4190 | 22750 | 0.003 | 0.0043 | 0.9019 | - |
3.4566 | 23000 | 0.0027 | 0.0042 | 0.8982 | - |
3.4941 | 23250 | 0.0027 | 0.0042 | 0.9014 | - |
3.5317 | 23500 | 0.0034 | 0.0042 | 0.9025 | - |
3.5693 | 23750 | 0.003 | 0.0041 | 0.9027 | - |
3.6069 | 24000 | 0.0029 | 0.0041 | 0.9003 | - |
3.6444 | 24250 | 0.0027 | 0.0040 | 0.9023 | - |
3.6820 | 24500 | 0.0027 | 0.0040 | 0.9035 | - |
3.7196 | 24750 | 0.0033 | 0.0040 | 0.9042 | - |
3.7571 | 25000 | 0.0028 | 0.0039 | 0.9053 | - |
3.7947 | 25250 | 0.0027 | 0.0039 | 0.9049 | - |
3.8323 | 25500 | 0.0033 | 0.0039 | 0.9057 | - |
3.8699 | 25750 | 0.0025 | 0.0039 | 0.9075 | - |
3.9074 | 26000 | 0.003 | 0.0039 | 0.9068 | - |
3.9450 | 26250 | 0.0026 | 0.0039 | 0.9073 | - |
3.9826 | 26500 | 0.0023 | 0.0038 | 0.9072 | - |
4.0 | 26616 | - | - | - | 0.9074 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.2.2+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}