File size: 26,973 Bytes
f3e4fa1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:79621
- loss:CosineSimilarityLoss
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
widget:
- source_sentence: Data demografi Indonesia 2021 perempuan dan lakilaki
sentences:
- Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Komoditi HS, Februari
2015
- Statistik Potensi Desa Provinsi Jawa Barat 2014
- Pengeluaran untuk Konsumsi Penduduk Indonesia, September 2017
- source_sentence: Data analisis tematik kependudukan Indonesia migrasi dan ketenagakerjaan
sentences:
- Direktori Perusahaan Industri Penggilingan Padi Tahun 2012 Provinsi Bengkulu
- Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut HS, Juni 2023
- Luas Panen dan Produksi Padi 2022
- source_sentence: Daftar perusahaan penggilingan padi Kalimantan
sentences:
- Ringkasan Neraca Arus Dana, Triwulan II, 2011*), (Miliar Rupiah)
- Klasifikasi Baku Komoditas Indonesia 2012 Buku 1
- Statistik Penduduk Lanjut Usia Provinsi Nusa Tenggara Barat 2010-Hasil Sensus
Penduduk 2010
- source_sentence: Perdagangan luar negeri impor Januari 2010
sentences:
- Buletin Statistik Perdagangan Luar Negeri Impor Januari 2010
- Statistik Tanaman Sayuran dan Buah-buahan Semusim Indonesia 2012
- Klasifikasi Baku Komoditas Indonesia (KBKI) 2012 Buku 4
- source_sentence: Biaya hidup kelompok perumahan Indonesia 2017
sentences:
- Indeks Harga Perdagangan Besar 2007
- Statistik Upah 2013
- Survei Biaya Hidup (SBH) 2018 Bulukumba, Watampone, Makassar, Pare-Pare, dan Palopo
datasets:
- yahyaabd/allstats-search-pairs-dataset
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstats semantic mpnet eval
type: allstats-semantic-mpnet-eval
metrics:
- type: pearson_cosine
value: 0.9832636747278353
name: Pearson Cosine
- type: spearman_cosine
value: 0.8514737414469329
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstats semantic mpnet test
type: allstats-semantic-mpnet-test
metrics:
- type: pearson_cosine
value: 0.9832774320084267
name: Pearson Cosine
- type: spearman_cosine
value: 0.8521298612131248
name: Spearman Cosine
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the [allstats-search-pairs-dataset](https://huggingface.co/datasets/yahyaabd/allstats-search-pairs-dataset) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 75c57757a97f90ad739aca51fa8bfea0e485a7f2 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [allstats-search-pairs-dataset](https://huggingface.co/datasets/yahyaabd/allstats-search-pairs-dataset)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-v1-1")
# Run inference
sentences = [
'Biaya hidup kelompok perumahan Indonesia 2017',
'Statistik Upah 2013',
'Survei Biaya Hidup (SBH) 2018 Bulukumba, Watampone, Makassar, Pare-Pare, dan Palopo',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Datasets: `allstats-semantic-mpnet-eval` and `allstats-semantic-mpnet-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | allstats-semantic-mpnet-eval | allstats-semantic-mpnet-test |
|:--------------------|:-----------------------------|:-----------------------------|
| pearson_cosine | 0.9833 | 0.9833 |
| **spearman_cosine** | **0.8515** | **0.8521** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### allstats-search-pairs-dataset
* Dataset: [allstats-search-pairs-dataset](https://huggingface.co/datasets/yahyaabd/allstats-search-pairs-dataset) at [6712cb1](https://huggingface.co/datasets/yahyaabd/allstats-search-pairs-dataset/tree/6712cb14bbd89da6f87890ac082b09e0adb7a02e)
* Size: 79,621 training samples
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 5 tokens</li><li>mean: 10.78 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.73 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 0.99</li></ul> |
* Samples:
| query | doc | label |
|:--------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------|:------------------|
| <code>Produksi jagung di Indonesia tahun 2009</code> | <code>Indeks Unit Value Ekspor Menurut Kode SITC Bulan Februari 2024</code> | <code>0.1</code> |
| <code>Data produksi industri manufaktur 2021</code> | <code>Perkembangan Indeks Produksi Industri Manufaktur 2021</code> | <code>0.96</code> |
| <code>direktori perusahaan industri penggilingan padi tahun 2012 provinsi sulawesi utara dan gorontalo</code> | <code>Neraca Pemerintahan Umum Indonesia 2007-2012</code> | <code>0.03</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### allstats-search-pairs-dataset
* Dataset: [allstats-search-pairs-dataset](https://huggingface.co/datasets/yahyaabd/allstats-search-pairs-dataset) at [6712cb1](https://huggingface.co/datasets/yahyaabd/allstats-search-pairs-dataset/tree/6712cb14bbd89da6f87890ac082b09e0adb7a02e)
* Size: 9,952 evaluation samples
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 5 tokens</li><li>mean: 10.75 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.09 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 0.01</li><li>mean: 0.48</li><li>max: 0.99</li></ul> |
* Samples:
| query | doc | label |
|:--------------------------------------------------------------------|:-----------------------------------------------------------------|:------------------|
| <code>Daftar perusahaan industri pengolahan skala kecil 2006</code> | <code>Statistik Migrasi Nusa Tenggara Barat Hasil SP 2010</code> | <code>0.05</code> |
| <code>Populasi Indonesia per provinsi 2000-2010</code> | <code>Indikator Ekonomi Desember 2023</code> | <code>0.08</code> |
| <code>Data harga barang desa non-pangan tahun 2022</code> | <code>Statistik Kunjungan Tamu Asing 2004</code> | <code>0.1</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 12
- `warmup_ratio`: 0.1
- `fp16`: True
- `dataloader_num_workers`: 4
- `load_best_model_at_end`: True
- `label_smoothing_factor`: 0.01
- `eval_on_start`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 12
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.01
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: True
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | allstats-semantic-mpnet-eval_spearman_cosine | allstats-semantic-mpnet-test_spearman_cosine |
|:----------:|:---------:|:-------------:|:---------------:|:--------------------------------------------:|:--------------------------------------------:|
| 0 | 0 | - | 0.0958 | 0.6404 | - |
| 0.2008 | 250 | 0.0464 | 0.0246 | 0.7693 | - |
| 0.4016 | 500 | 0.0218 | 0.0179 | 0.7720 | - |
| 0.6024 | 750 | 0.0172 | 0.0153 | 0.7790 | - |
| 0.8032 | 1000 | 0.0156 | 0.0136 | 0.7809 | - |
| 1.0040 | 1250 | 0.0137 | 0.0139 | 0.7769 | - |
| 1.2048 | 1500 | 0.0112 | 0.0120 | 0.7825 | - |
| 1.4056 | 1750 | 0.0104 | 0.0112 | 0.7869 | - |
| 1.6064 | 2000 | 0.01 | 0.0103 | 0.7893 | - |
| 1.8072 | 2250 | 0.009 | 0.0097 | 0.7944 | - |
| 2.0080 | 2500 | 0.0088 | 0.0097 | 0.7947 | - |
| 2.2088 | 2750 | 0.0064 | 0.0086 | 0.7971 | - |
| 2.4096 | 3000 | 0.006 | 0.0085 | 0.7991 | - |
| 2.6104 | 3250 | 0.006 | 0.0084 | 0.7995 | - |
| 2.8112 | 3500 | 0.006 | 0.0081 | 0.8047 | - |
| 3.0120 | 3750 | 0.0058 | 0.0082 | 0.8055 | - |
| 3.2129 | 4000 | 0.0041 | 0.0077 | 0.8096 | - |
| 3.4137 | 4250 | 0.0042 | 0.0078 | 0.8092 | - |
| 3.6145 | 4500 | 0.004 | 0.0074 | 0.8107 | - |
| 3.8153 | 4750 | 0.0043 | 0.0073 | 0.8132 | - |
| 4.0161 | 5000 | 0.0044 | 0.0076 | 0.8090 | - |
| 4.2169 | 5250 | 0.0032 | 0.0071 | 0.8173 | - |
| 4.4177 | 5500 | 0.0031 | 0.0068 | 0.8218 | - |
| 4.6185 | 5750 | 0.0031 | 0.0067 | 0.8200 | - |
| 4.8193 | 6000 | 0.0032 | 0.0065 | 0.8233 | - |
| 5.0201 | 6250 | 0.0029 | 0.0067 | 0.8227 | - |
| 5.2209 | 6500 | 0.0024 | 0.0064 | 0.8249 | - |
| 5.4217 | 6750 | 0.0023 | 0.0066 | 0.8298 | - |
| 5.6225 | 7000 | 0.0025 | 0.0063 | 0.8271 | - |
| 5.8233 | 7250 | 0.0024 | 0.0064 | 0.8299 | - |
| 6.0241 | 7500 | 0.0023 | 0.0064 | 0.8312 | - |
| 6.2249 | 7750 | 0.0017 | 0.0061 | 0.8319 | - |
| 6.4257 | 8000 | 0.0017 | 0.0059 | 0.8330 | - |
| 6.6265 | 8250 | 0.0019 | 0.0064 | 0.8309 | - |
| 6.8273 | 8500 | 0.002 | 0.0061 | 0.8332 | - |
| 7.0281 | 8750 | 0.0018 | 0.0061 | 0.8360 | - |
| 7.2289 | 9000 | 0.0014 | 0.0060 | 0.8387 | - |
| 7.4297 | 9250 | 0.0014 | 0.0059 | 0.8396 | - |
| 7.6305 | 9500 | 0.0014 | 0.0059 | 0.8402 | - |
| 7.8313 | 9750 | 0.0014 | 0.0059 | 0.8388 | - |
| 8.0321 | 10000 | 0.0014 | 0.0058 | 0.8411 | - |
| 8.2329 | 10250 | 0.0011 | 0.0059 | 0.8420 | - |
| 8.4337 | 10500 | 0.0011 | 0.0057 | 0.8431 | - |
| 8.6345 | 10750 | 0.0011 | 0.0057 | 0.8418 | - |
| 8.8353 | 11000 | 0.0011 | 0.0057 | 0.8440 | - |
| 9.0361 | 11250 | 0.0011 | 0.0057 | 0.8449 | - |
| 9.2369 | 11500 | 0.0008 | 0.0056 | 0.8451 | - |
| 9.4378 | 11750 | 0.0009 | 0.0057 | 0.8456 | - |
| 9.6386 | 12000 | 0.0009 | 0.0056 | 0.8469 | - |
| 9.8394 | 12250 | 0.0009 | 0.0056 | 0.8470 | - |
| 10.0402 | 12500 | 0.0009 | 0.0056 | 0.8475 | - |
| 10.2410 | 12750 | 0.0007 | 0.0056 | 0.8489 | - |
| 10.4418 | 13000 | 0.0007 | 0.0056 | 0.8495 | - |
| 10.6426 | 13250 | 0.0007 | 0.0056 | 0.8501 | - |
| 10.8434 | 13500 | 0.0007 | 0.0056 | 0.8497 | - |
| 11.0442 | 13750 | 0.0006 | 0.0056 | 0.8500 | - |
| **11.245** | **14000** | **0.0006** | **0.0055** | **0.8506** | **-** |
| 11.4458 | 14250 | 0.0006 | 0.0055 | 0.8507 | - |
| 11.6466 | 14500 | 0.0006 | 0.0055 | 0.8512 | - |
| 11.8474 | 14750 | 0.0006 | 0.0055 | 0.8515 | - |
| 12.0 | 14940 | - | - | - | 0.8521 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |