File size: 26,973 Bytes
f3e4fa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:79621
- loss:CosineSimilarityLoss
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
widget:
- source_sentence: Data demografi Indonesia 2021 perempuan dan lakilaki
  sentences:
  - Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Komoditi HS, Februari
    2015
  - Statistik Potensi Desa Provinsi Jawa Barat 2014
  - Pengeluaran untuk Konsumsi Penduduk Indonesia, September 2017
- source_sentence: Data analisis tematik kependudukan Indonesia migrasi dan ketenagakerjaan
  sentences:
  - Direktori Perusahaan Industri Penggilingan Padi Tahun 2012 Provinsi Bengkulu
  - Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut HS, Juni 2023
  - Luas Panen dan Produksi Padi 2022
- source_sentence: Daftar perusahaan penggilingan padi Kalimantan
  sentences:
  - Ringkasan Neraca Arus Dana, Triwulan II, 2011*), (Miliar Rupiah)
  - Klasifikasi Baku Komoditas Indonesia 2012 Buku 1
  - Statistik Penduduk Lanjut Usia Provinsi Nusa Tenggara Barat 2010-Hasil Sensus
    Penduduk 2010
- source_sentence: Perdagangan luar negeri impor Januari 2010
  sentences:
  - Buletin Statistik Perdagangan Luar Negeri Impor Januari 2010
  - Statistik Tanaman Sayuran dan Buah-buahan Semusim Indonesia 2012
  - Klasifikasi Baku Komoditas Indonesia (KBKI) 2012 Buku 4
- source_sentence: Biaya hidup kelompok perumahan Indonesia 2017
  sentences:
  - Indeks Harga Perdagangan Besar 2007
  - Statistik Upah 2013
  - Survei Biaya Hidup (SBH) 2018 Bulukumba, Watampone, Makassar, Pare-Pare, dan Palopo
datasets:
- yahyaabd/allstats-search-pairs-dataset
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: allstats semantic mpnet eval
      type: allstats-semantic-mpnet-eval
    metrics:
    - type: pearson_cosine
      value: 0.9832636747278353
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8514737414469329
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: allstats semantic mpnet test
      type: allstats-semantic-mpnet-test
    metrics:
    - type: pearson_cosine
      value: 0.9832774320084267
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8521298612131248
      name: Spearman Cosine
---

# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the [allstats-search-pairs-dataset](https://huggingface.co/datasets/yahyaabd/allstats-search-pairs-dataset) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 75c57757a97f90ad739aca51fa8bfea0e485a7f2 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [allstats-search-pairs-dataset](https://huggingface.co/datasets/yahyaabd/allstats-search-pairs-dataset)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-v1-1")
# Run inference
sentences = [
    'Biaya hidup kelompok perumahan Indonesia 2017',
    'Statistik Upah 2013',
    'Survei Biaya Hidup (SBH) 2018 Bulukumba, Watampone, Makassar, Pare-Pare, dan Palopo',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity

* Datasets: `allstats-semantic-mpnet-eval` and `allstats-semantic-mpnet-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | allstats-semantic-mpnet-eval | allstats-semantic-mpnet-test |
|:--------------------|:-----------------------------|:-----------------------------|
| pearson_cosine      | 0.9833                       | 0.9833                       |
| **spearman_cosine** | **0.8515**                   | **0.8521**                   |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### allstats-search-pairs-dataset

* Dataset: [allstats-search-pairs-dataset](https://huggingface.co/datasets/yahyaabd/allstats-search-pairs-dataset) at [6712cb1](https://huggingface.co/datasets/yahyaabd/allstats-search-pairs-dataset/tree/6712cb14bbd89da6f87890ac082b09e0adb7a02e)
* Size: 79,621 training samples
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                             | doc                                                                               | label                                                           |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                           |
  | details | <ul><li>min: 5 tokens</li><li>mean: 10.78 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.73 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 0.99</li></ul> |
* Samples:
  | query                                                                                                         | doc                                                                         | label             |
  |:--------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------|:------------------|
  | <code>Produksi jagung di Indonesia tahun 2009</code>                                                          | <code>Indeks Unit Value Ekspor Menurut Kode SITC Bulan Februari 2024</code> | <code>0.1</code>  |
  | <code>Data produksi industri manufaktur 2021</code>                                                           | <code>Perkembangan Indeks Produksi Industri Manufaktur 2021</code>          | <code>0.96</code> |
  | <code>direktori perusahaan industri penggilingan padi tahun 2012 provinsi sulawesi utara dan gorontalo</code> | <code>Neraca Pemerintahan Umum Indonesia 2007-2012</code>                   | <code>0.03</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```

### Evaluation Dataset

#### allstats-search-pairs-dataset

* Dataset: [allstats-search-pairs-dataset](https://huggingface.co/datasets/yahyaabd/allstats-search-pairs-dataset) at [6712cb1](https://huggingface.co/datasets/yahyaabd/allstats-search-pairs-dataset/tree/6712cb14bbd89da6f87890ac082b09e0adb7a02e)
* Size: 9,952 evaluation samples
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                             | doc                                                                               | label                                                            |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                            |
  | details | <ul><li>min: 5 tokens</li><li>mean: 10.75 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.09 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 0.01</li><li>mean: 0.48</li><li>max: 0.99</li></ul> |
* Samples:
  | query                                                               | doc                                                              | label             |
  |:--------------------------------------------------------------------|:-----------------------------------------------------------------|:------------------|
  | <code>Daftar perusahaan industri pengolahan skala kecil 2006</code> | <code>Statistik Migrasi Nusa Tenggara Barat Hasil SP 2010</code> | <code>0.05</code> |
  | <code>Populasi Indonesia per provinsi 2000-2010</code>              | <code>Indikator Ekonomi Desember 2023</code>                     | <code>0.08</code> |
  | <code>Data harga barang desa non-pangan tahun 2022</code>           | <code>Statistik Kunjungan Tamu Asing 2004</code>                 | <code>0.1</code>  |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 12
- `warmup_ratio`: 0.1
- `fp16`: True
- `dataloader_num_workers`: 4
- `load_best_model_at_end`: True
- `label_smoothing_factor`: 0.01
- `eval_on_start`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 12
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.01
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: True
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step      | Training Loss | Validation Loss | allstats-semantic-mpnet-eval_spearman_cosine | allstats-semantic-mpnet-test_spearman_cosine |
|:----------:|:---------:|:-------------:|:---------------:|:--------------------------------------------:|:--------------------------------------------:|
| 0          | 0         | -             | 0.0958          | 0.6404                                       | -                                            |
| 0.2008     | 250       | 0.0464        | 0.0246          | 0.7693                                       | -                                            |
| 0.4016     | 500       | 0.0218        | 0.0179          | 0.7720                                       | -                                            |
| 0.6024     | 750       | 0.0172        | 0.0153          | 0.7790                                       | -                                            |
| 0.8032     | 1000      | 0.0156        | 0.0136          | 0.7809                                       | -                                            |
| 1.0040     | 1250      | 0.0137        | 0.0139          | 0.7769                                       | -                                            |
| 1.2048     | 1500      | 0.0112        | 0.0120          | 0.7825                                       | -                                            |
| 1.4056     | 1750      | 0.0104        | 0.0112          | 0.7869                                       | -                                            |
| 1.6064     | 2000      | 0.01          | 0.0103          | 0.7893                                       | -                                            |
| 1.8072     | 2250      | 0.009         | 0.0097          | 0.7944                                       | -                                            |
| 2.0080     | 2500      | 0.0088        | 0.0097          | 0.7947                                       | -                                            |
| 2.2088     | 2750      | 0.0064        | 0.0086          | 0.7971                                       | -                                            |
| 2.4096     | 3000      | 0.006         | 0.0085          | 0.7991                                       | -                                            |
| 2.6104     | 3250      | 0.006         | 0.0084          | 0.7995                                       | -                                            |
| 2.8112     | 3500      | 0.006         | 0.0081          | 0.8047                                       | -                                            |
| 3.0120     | 3750      | 0.0058        | 0.0082          | 0.8055                                       | -                                            |
| 3.2129     | 4000      | 0.0041        | 0.0077          | 0.8096                                       | -                                            |
| 3.4137     | 4250      | 0.0042        | 0.0078          | 0.8092                                       | -                                            |
| 3.6145     | 4500      | 0.004         | 0.0074          | 0.8107                                       | -                                            |
| 3.8153     | 4750      | 0.0043        | 0.0073          | 0.8132                                       | -                                            |
| 4.0161     | 5000      | 0.0044        | 0.0076          | 0.8090                                       | -                                            |
| 4.2169     | 5250      | 0.0032        | 0.0071          | 0.8173                                       | -                                            |
| 4.4177     | 5500      | 0.0031        | 0.0068          | 0.8218                                       | -                                            |
| 4.6185     | 5750      | 0.0031        | 0.0067          | 0.8200                                       | -                                            |
| 4.8193     | 6000      | 0.0032        | 0.0065          | 0.8233                                       | -                                            |
| 5.0201     | 6250      | 0.0029        | 0.0067          | 0.8227                                       | -                                            |
| 5.2209     | 6500      | 0.0024        | 0.0064          | 0.8249                                       | -                                            |
| 5.4217     | 6750      | 0.0023        | 0.0066          | 0.8298                                       | -                                            |
| 5.6225     | 7000      | 0.0025        | 0.0063          | 0.8271                                       | -                                            |
| 5.8233     | 7250      | 0.0024        | 0.0064          | 0.8299                                       | -                                            |
| 6.0241     | 7500      | 0.0023        | 0.0064          | 0.8312                                       | -                                            |
| 6.2249     | 7750      | 0.0017        | 0.0061          | 0.8319                                       | -                                            |
| 6.4257     | 8000      | 0.0017        | 0.0059          | 0.8330                                       | -                                            |
| 6.6265     | 8250      | 0.0019        | 0.0064          | 0.8309                                       | -                                            |
| 6.8273     | 8500      | 0.002         | 0.0061          | 0.8332                                       | -                                            |
| 7.0281     | 8750      | 0.0018        | 0.0061          | 0.8360                                       | -                                            |
| 7.2289     | 9000      | 0.0014        | 0.0060          | 0.8387                                       | -                                            |
| 7.4297     | 9250      | 0.0014        | 0.0059          | 0.8396                                       | -                                            |
| 7.6305     | 9500      | 0.0014        | 0.0059          | 0.8402                                       | -                                            |
| 7.8313     | 9750      | 0.0014        | 0.0059          | 0.8388                                       | -                                            |
| 8.0321     | 10000     | 0.0014        | 0.0058          | 0.8411                                       | -                                            |
| 8.2329     | 10250     | 0.0011        | 0.0059          | 0.8420                                       | -                                            |
| 8.4337     | 10500     | 0.0011        | 0.0057          | 0.8431                                       | -                                            |
| 8.6345     | 10750     | 0.0011        | 0.0057          | 0.8418                                       | -                                            |
| 8.8353     | 11000     | 0.0011        | 0.0057          | 0.8440                                       | -                                            |
| 9.0361     | 11250     | 0.0011        | 0.0057          | 0.8449                                       | -                                            |
| 9.2369     | 11500     | 0.0008        | 0.0056          | 0.8451                                       | -                                            |
| 9.4378     | 11750     | 0.0009        | 0.0057          | 0.8456                                       | -                                            |
| 9.6386     | 12000     | 0.0009        | 0.0056          | 0.8469                                       | -                                            |
| 9.8394     | 12250     | 0.0009        | 0.0056          | 0.8470                                       | -                                            |
| 10.0402    | 12500     | 0.0009        | 0.0056          | 0.8475                                       | -                                            |
| 10.2410    | 12750     | 0.0007        | 0.0056          | 0.8489                                       | -                                            |
| 10.4418    | 13000     | 0.0007        | 0.0056          | 0.8495                                       | -                                            |
| 10.6426    | 13250     | 0.0007        | 0.0056          | 0.8501                                       | -                                            |
| 10.8434    | 13500     | 0.0007        | 0.0056          | 0.8497                                       | -                                            |
| 11.0442    | 13750     | 0.0006        | 0.0056          | 0.8500                                       | -                                            |
| **11.245** | **14000** | **0.0006**    | **0.0055**      | **0.8506**                                   | **-**                                        |
| 11.4458    | 14250     | 0.0006        | 0.0055          | 0.8507                                       | -                                            |
| 11.6466    | 14500     | 0.0006        | 0.0055          | 0.8512                                       | -                                            |
| 11.8474    | 14750     | 0.0006        | 0.0055          | 0.8515                                       | -                                            |
| 12.0       | 14940     | -             | -               | -                                            | 0.8521                                       |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->