SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2 on the allstats-search-pairs-dataset dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/test-model")
# Run inference
sentences = [
    'Biaya hidup kelompok perumahan Indonesia 2017',
    'Statistik Upah 2013',
    'Survei Biaya Hidup (SBH) 2018 Bulukumba, Watampone, Makassar, Pare-Pare, dan Palopo',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric allstats-semantic-mpnet-eval allstats-semantic-mpnet-test
pearson_cosine 0.9831 0.9832
spearman_cosine 0.841 0.8379

Training Details

Training Dataset

allstats-search-pairs-dataset

  • Dataset: allstats-search-pairs-dataset at 6712cb1
  • Size: 79,621 training samples
  • Columns: query, doc, and label
  • Approximate statistics based on the first 1000 samples:
    query doc label
    type string string float
    details
    • min: 5 tokens
    • mean: 10.78 tokens
    • max: 39 tokens
    • min: 5 tokens
    • mean: 13.73 tokens
    • max: 58 tokens
    • min: 0.0
    • mean: 0.44
    • max: 0.99
  • Samples:
    query doc label
    Produksi jagung di Indonesia tahun 2009 Indeks Unit Value Ekspor Menurut Kode SITC Bulan Februari 2024 0.1
    Data produksi industri manufaktur 2021 Perkembangan Indeks Produksi Industri Manufaktur 2021 0.96
    direktori perusahaan industri penggilingan padi tahun 2012 provinsi sulawesi utara dan gorontalo Neraca Pemerintahan Umum Indonesia 2007-2012 0.03
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

allstats-search-pairs-dataset

  • Dataset: allstats-search-pairs-dataset at 6712cb1
  • Size: 9,952 evaluation samples
  • Columns: query, doc, and label
  • Approximate statistics based on the first 1000 samples:
    query doc label
    type string string float
    details
    • min: 5 tokens
    • mean: 10.75 tokens
    • max: 40 tokens
    • min: 4 tokens
    • mean: 14.09 tokens
    • max: 49 tokens
    • min: 0.01
    • mean: 0.48
    • max: 0.99
  • Samples:
    query doc label
    Daftar perusahaan industri pengolahan skala kecil 2006 Statistik Migrasi Nusa Tenggara Barat Hasil SP 2010 0.05
    Populasi Indonesia per provinsi 2000-2010 Indikator Ekonomi Desember 2023 0.08
    Data harga barang desa non-pangan tahun 2022 Statistik Kunjungan Tamu Asing 2004 0.1
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • num_train_epochs: 6
  • warmup_ratio: 0.1
  • fp16: True
  • dataloader_num_workers: 4
  • load_best_model_at_end: True
  • label_smoothing_factor: 0.01
  • eval_on_start: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 6
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.01
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: True
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss allstats-semantic-mpnet-eval_spearman_cosine allstats-semantic-mpnet-test_spearman_cosine
0 0 - 0.0958 0.6404 -
0.1004 250 0.0482 0.0269 0.7685 -
0.2009 500 0.0249 0.0200 0.7737 -
0.3013 750 0.0196 0.0172 0.7768 -
0.4018 1000 0.0184 0.0172 0.7744 -
0.5022 1250 0.0185 0.0159 0.7751 -
0.6027 1500 0.0155 0.0156 0.7825 -
0.7031 1750 0.0165 0.0149 0.7826 -
0.8035 2000 0.0146 0.0136 0.7791 -
0.9040 2250 0.0132 0.0127 0.7825 -
1.0044 2500 0.0127 0.0129 0.7818 -
1.1049 2750 0.0104 0.0114 0.7849 -
1.2053 3000 0.009 0.0108 0.7870 -
1.3057 3250 0.0091 0.0112 0.7877 -
1.4062 3500 0.009 0.0104 0.7888 -
1.5066 3750 0.009 0.0101 0.7937 -
1.6071 4000 0.0084 0.0099 0.7924 -
1.7075 4250 0.008 0.0097 0.7942 -
1.8080 4500 0.0079 0.0094 0.7946 -
1.9084 4750 0.0078 0.0092 0.7928 -
2.0088 5000 0.0081 0.0088 0.7986 -
2.1093 5250 0.0056 0.0079 0.8025 -
2.2097 5500 0.0052 0.0080 0.8019 -
2.3102 5750 0.0048 0.0079 0.8073 -
2.4106 6000 0.0053 0.0081 0.8058 -
2.5110 6250 0.0049 0.0079 0.8091 -
2.6115 6500 0.0053 0.0077 0.8081 -
2.7119 6750 0.0052 0.0075 0.8075 -
2.8124 7000 0.0049 0.0077 0.8089 -
2.9128 7250 0.0051 0.0076 0.8066 -
3.0133 7500 0.0048 0.0074 0.8127 -
3.1137 7750 0.0034 0.0069 0.8162 -
3.2141 8000 0.0033 0.0070 0.8164 -
3.3146 8250 0.0036 0.0068 0.8194 -
3.4150 8500 0.0032 0.0069 0.8156 -
3.5155 8750 0.0032 0.0068 0.8196 -
3.6159 9000 0.0032 0.0067 0.8197 -
3.7164 9250 0.0034 0.0068 0.8194 -
3.8168 9500 0.0034 0.0066 0.8194 -
3.9172 9750 0.0032 0.0063 0.8239 -
4.0177 10000 0.0032 0.0065 0.8229 -
4.1181 10250 0.0023 0.0063 0.8258 -
4.2186 10500 0.0022 0.0062 0.8293 -
4.3190 10750 0.002 0.0063 0.8283 -
4.4194 11000 0.0023 0.0060 0.8306 -
4.5199 11250 0.0021 0.0061 0.8318 -
4.6203 11500 0.0021 0.0060 0.8290 -
4.7208 11750 0.0022 0.0058 0.8329 -
4.8212 12000 0.0021 0.0058 0.8342 -
4.9217 12250 0.0021 0.0058 0.8360 -
5.0221 12500 0.0017 0.0057 0.8355 -
5.1225 12750 0.0014 0.0057 0.8377 -
5.2230 13000 0.0015 0.0058 0.8363 -
5.3234 13250 0.0015 0.0058 0.8369 -
5.4239 13500 0.0014 0.0057 0.8386 -
5.5243 13750 0.0014 0.0057 0.8387 -
5.6247 14000 0.0015 0.0057 0.8392 -
5.7252 14250 0.0014 0.0056 0.8409 -
5.8256 14500 0.0014 0.0056 0.8410 -
5.9261 14750 0.0014 0.0056 0.8410 -
6.0 14934 - - - 0.8379
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.1
  • Transformers: 4.48.0
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
16
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yahyaabd/test-model

Dataset used to train yahyaabd/test-model

Evaluation results