yakazimir's picture
End of training
73f662a verified
metadata
library_name: transformers
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
  - alignment-handbook
  - trl
  - simpo
  - generated_from_trainer
  - trl
  - simpo
  - generated_from_trainer
datasets:
  - yakazimir/llama3-ultrafeedback-armorm
model-index:
  - name: llama3_qfUNL_best_entropy
    results: []

llama3_qfUNL_best_entropy

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the yakazimir/llama3-ultrafeedback-armorm dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0906
  • Rewards/chosen: -5.3136
  • Rewards/rejected: -7.1413
  • Rewards/accuracies: 0.7741
  • Rewards/margins: 1.8277
  • Logps/rejected: -0.7141
  • Logps/chosen: -0.5314
  • Logits/rejected: -1.3346
  • Logits/chosen: -1.3749
  • Semantic Entropy: 0.9976

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Semantic Entropy
2.0424 0.8743 400 2.0936 -5.3144 -7.1419 0.7771 1.8275 -0.7142 -0.5314 -1.3326 -1.3731 0.9976

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1