YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
AI IMAGE AND SOURCE DETECTOR
- AI IMAGE DETECTOR
- Detects if an image is real or AI-generated.
- Uses Vision Transformer (ViT) architecture.
- High accuracy for various image types.
- AI SOURCE DETECTOR
- Identifies the source of AI-generated images.
- Supports: Midjourney, DALL-E, Stable Diffusion.
- Provides confidence scores.
USAGE
Python Code Example for AI Image Detector
from transformers import ViTImageProcessor, ViTForImageClassification
from PIL import Image
import torch
# Load model and processor
processor = ViTImageProcessor.from_pretrained("yaya36095/ai-image-detector")
model = ViTForImageClassification.from_pretrained("yaya36095/ai-image-detector")
def detect_image(image_path):
image = Image.open(image_path)
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
predictions = outputs.logits.softmax(dim=-1)
prediction_id = torch.argmax(predictions).item()
confidence = predictions[0][prediction_id].item() * 100
result = "AI Generated" if prediction_id == 1 else "Real Image"
return result, confidence
# Example usage
# result, confidence = detect_image("path/to/image.jpg")
# print(f"Result: {result} (Confidence: {confidence:.2f}%)")
Python Code Example for AI Source Detector
from transformers import ViTImageProcessor, ViTForImageClassification
from PIL import Image
import torch
# Load model and processor
processor = ViTImageProcessor.from_pretrained("yaya36095/ai-source-detector")
model = ViTForImageClassification.from_pretrained("yaya36095/ai-source-detector")
def detect_source(image_path):
image = Image.open(image_path)
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
predictions = outputs.logits.softmax(dim=-1)
prediction_id = torch.argmax(predictions).item()
confidence = predictions[0][prediction_id].item() * 100
sources = ["Real Image", "Midjourney", "DALL-E", "Stable Diffusion"]
result = sources[prediction_id]
return result, confidence
# Example usage
# result, confidence = detect_source("path/to/image.jpg")
# print(f"Source: {result} (Confidence: {confidence:.2f}%)")
Combined Analysis Code Example
def analyze_image(image_path):
"""
Analyzes an image to detect if it is AI-generated and its source.
Args:
image_path: Path to the image file
Returns:
dict: Results containing detection and source information
"""
# Load models
detector = ViTForImageClassification.from_pretrained("yaya36095/ai-image-detector")
source_detector = ViTForImageClassification.from_pretrained("yaya36095/ai-source-detector")
processor = ViTImageProcessor.from_pretrained("yaya36095/ai-image-detector")
# Open and process image
image = Image.open(image_path)
inputs = processor(images=image, return_tensors="pt")
# Get AI detection result
with torch.no_grad():
outputs = detector(**inputs)
predictions = outputs.logits.softmax(dim=-1)
is_ai = torch.argmax(predictions).item() == 1
ai_confidence = predictions[0][1].item() * 100
# Get source detection if it is AI
source = "Not AI Generated"
source_confidence = 0
if is_ai:
with torch.no_grad():
outputs = source_detector(**inputs)
predictions = outputs.logits.softmax(dim=-1)
source_id = torch.argmax(predictions).item()
sources = ["Real Image", "Midjourney", "DALL-E", "Stable Diffusion"]
source = sources[source_id]
source_confidence = predictions[0][source_id].item() * 100
return {
"is_ai": is_ai,
"ai_confidence": ai_confidence,
"source": source,
"source_confidence": source_confidence
}
# Example usage:
# result = analyze_image("path/to/image.jpg")
# print(f"AI Generated: {result['is_ai']}")
# print(f"AI Confidence: {result['ai_confidence']:.2f}%")
# print(f"Source: {result['source']}")
# print(f"Source Confidence: {result['source_confidence']:.2f}%")
FEATURES
- Supports all image formats.
- Automatic image resizing.
- Confidence scores for predictions.
- Combined analysis (AI detection + Source).
LIMITATIONS
- Best with clear, high-quality images.
- May vary with heavily edited images.
- Requires good internet connection for first load.
For more information visit:
- Downloads last month
- 165