MeMo_BERT-SA_DanskBERT

This model is a fine-tuned version of vesteinn/DanskBERT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0740
  • F1-score: 0.7498

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1-score
No log 1.0 297 0.6212 0.7242
0.6865 2.0 594 0.8063 0.7421
0.6865 3.0 891 0.8167 0.7366
0.4433 4.0 1188 1.3513 0.7479
0.4433 5.0 1485 1.0740 0.7498
0.2387 6.0 1782 1.6338 0.7128
0.0864 7.0 2079 1.7501 0.7032
0.0864 8.0 2376 2.1446 0.7137
0.0505 9.0 2673 2.2850 0.7117
0.0505 10.0 2970 2.2474 0.7430
0.0183 11.0 3267 2.2403 0.7315
0.023 12.0 3564 2.2304 0.7274
0.023 13.0 3861 2.3297 0.7304
0.0227 14.0 4158 2.3744 0.7338
0.0227 15.0 4455 2.3618 0.7383
0.0113 16.0 4752 2.2777 0.7457
0.0058 17.0 5049 2.3752 0.7440
0.0058 18.0 5346 2.4774 0.7406
0.0019 19.0 5643 2.3590 0.7451
0.0019 20.0 5940 2.3930 0.7477

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
58
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yemen2016/MeMo_BERT-SA_DanskBERT

Base model

vesteinn/DanskBERT
Finetuned
(13)
this model