MeMo_BERT-WSD-DanskBERT

This model is a fine-tuned version of vesteinn/DanskBERT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7755
  • F1-score: 0.5209

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1-score
No log 1.0 61 1.4766 0.1229
No log 2.0 122 1.4366 0.1229
No log 3.0 183 1.3636 0.2462
No log 4.0 244 1.2889 0.3692
No log 5.0 305 1.4150 0.3786
No log 6.0 366 1.5581 0.3409
No log 7.0 427 1.6512 0.4664
No log 8.0 488 1.7405 0.4661
0.9424 9.0 549 1.7755 0.5209
0.9424 10.0 610 2.4738 0.4351
0.9424 11.0 671 2.4721 0.4858
0.9424 12.0 732 2.9449 0.4491
0.9424 13.0 793 2.8346 0.4528
0.9424 14.0 854 3.0715 0.4845
0.9424 15.0 915 3.1416 0.4520
0.9424 16.0 976 3.0893 0.5197
0.1197 17.0 1037 3.1668 0.4764
0.1197 18.0 1098 3.2142 0.4656
0.1197 19.0 1159 3.2174 0.5087
0.1197 20.0 1220 3.2239 0.5087

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
5
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yemen2016/MeMo_BERT-WSD-DanskBERT

Base model

vesteinn/DanskBERT
Finetuned
(13)
this model