MeMo_BERT-WSD-ScandiBERT

This model is a fine-tuned version of vesteinn/ScandiBERT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0491
  • F1-score: 0.4001

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1-score
No log 1.0 61 1.3760 0.1229
No log 2.0 122 1.4064 0.1229
No log 3.0 183 1.4753 0.1229
No log 4.0 244 1.3255 0.1229
No log 5.0 305 1.3649 0.1229
No log 6.0 366 1.3784 0.1229
No log 7.0 427 1.3312 0.2191
No log 8.0 488 1.3717 0.1229
1.2808 9.0 549 1.5063 0.1229
1.2808 10.0 610 1.2576 0.3721
1.2808 11.0 671 1.4630 0.3622
1.2808 12.0 732 1.7778 0.3258
1.2808 13.0 793 2.2233 0.3402
1.2808 14.0 854 2.1684 0.3619
1.2808 15.0 915 2.0034 0.3668
1.2808 16.0 976 1.8374 0.3818
0.9251 17.0 1037 1.9104 0.3956
0.9251 18.0 1098 2.0491 0.4001
0.9251 19.0 1159 2.1429 0.3534
0.9251 20.0 1220 2.1352 0.3648

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
3
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yemen2016/MeMo_BERT-WSD-ScandiBERT

Finetuned
(2)
this model