Image captioning model

End-to-end Transformer based image captioning model, where both the encoder and decoder use standard pre-trained transformer architectures.

Repository: https://github.com/yesidc/image-captioning

Encoder

The encoder uses the pre-trained Swin transformer (Liu et al., 2021) that is a general-purpose backbone for computer vision. It outperforms ViT, DeiT and ResNe(X)t models at tasks such as image classification, object detection and semantic segmentation. The fact that this model is not pre-trained to be a 'narrow expert'--- a model pre-trained to perform a specific task e.g., image classification --- makes it a good candidate for fine-tuning on a downstream task.

Decoder

Distilgpt2

Dataset

The model is fine-tuned and evaluated on the COCO 2017 dataset.

How to use this model using Transformer's pipeline

from transformers import  pipeline

image_to_text = pipeline("image-to-text", model="yesidcanoc/image-captioning-swin-tiny-distilgpt2")

# Provide path the image file
caption = image_to_text("./COCO_val2014_000000457986.jpg")
print(caption)

How To use this model using GenerateCaptions utility class.

Adapt the code below to your needs.

import os
from PIL import Image
import torchvision.transforms as transforms
from transformers import GPT2TokenizerFast, VisionEncoderDecoderModel

class DataProcessing:
    def __init__(self):
        # GPT-2 tokenizer
        self.tokenizer = GPT2TokenizerFast.from_pretrained('distilgpt2')
        self.tokenizer.pad_token = self.tokenizer.eos_token
        # Define the transforms to be applied to the images
        self.transform = transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        ])

class GenerateCaptions(DataProcessing):
    NUM_BEAMS = 3
    MAX_LENGTH = 15
    EARLY_STOPPING = True
    DO_SAMPLE = True
    TOP_K = 10
    NUM_RETURN_SEQUENCES = 2 # number of captions to generate

    def __init__(self, captioning_model):
        self.captioning_model = captioning_model
        super().__init__()

    def read_img_predict(self, path):
        try:
            with Image.open(path) as img:
                if img.mode != "RGB":
                    img = img.convert('RGB')
                img_transformed = self.transform(img).unsqueeze(0)
                # tensor dimensions max_lenght X num_return_sequences, where ij == some_token_id
                model_output = self.captioning_model.generate(
                    img_transformed,
                    num_beams=self.NUM_BEAMS,
                    max_length=self.MAX_LENGTH,
                    early_stopping=self.EARLY_STOPPING,
                    do_sample=self.DO_SAMPLE,
                    top_k=self.TOP_K,
                    num_return_sequences=self.NUM_RETURN_SEQUENCES,
                )
                # g is a tensor like this one: tensor([50256,    13,   198,   198,   198,   198,   198,   198,   198, 50256,
                # 50256, 50256, 50256, 50256, 50256])
                captions = [self.tokenizer.decode(g, skip_special_tokens=True).strip() for g in model_output]

                return captions
        except FileNotFoundError:
            raise FileNotFoundError(f"File not found: {path}")

    def generate_caption(self, path):
        """
        Generate captions for a single image or a directory of images
        :param path: path to image or directory of images
        :return: captions
        """
        if os.path.isdir(path):
            self.decoded_predictions = []
            for root, dirs, files in os.walk(path):
                for file in files:
                    self.decoded_predictions.append(self.read_img_predict(os.path.join(root, file)))
            return self.decoded_predictions
        elif os.path.isfile(path):
            return self.read_img_predict(path)
        else:
            raise ValueError(f"Invalid path: {path}")





image_captioning_model = VisionEncoderDecoderModel.from_pretrained("yesidcanoc/image-captioning-swin-tiny-distilgpt2")

generate_captions = GenerateCaptions(image_captioning_model)

captions = generate_captions.generate_caption('../data/test_data/images')

print(captions)

References

  • Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B. (2021). Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. ArXiv. /abs/2103.14030
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.