TB-OCR: an end-to-end OCR model handling text, math latex, and markdown formats all at once

Model Summary

TB-OCR-preview (Text Block OCR), created by Yifei Hu, is an end-to-end OCR model handling text, math latex, and markdown formats all at once. The model takes a block of text as the input and returns clean markdown output. Headers are marked with ##. Math expressions are guaranteed to be wrapped in brackets \( inline math \) \[ display math \] for easier parsing. This model does not require line-detection or math formula detection.

Running the model in 4-bit only requires ~2.8GB VRAM to load and exhibits little to none degradation.

Use Case (Important!)

This model is NOT designed to perform OCR on full pages. Please consider combining TFT-ID-1.0[HF], a text/tale/figure detection model, for full page OCR. It's also faster to split the larger text blocks into smaller ones and perform OCR in parallel (batch inference).

image/png

Sample Usage

# check out https://huggingface.co/microsoft/Phi-3.5-vision-instruct for more details

import torch
from transformers import AutoModelForCausalLM, AutoProcessor, BitsAndBytesConfig
from PIL import Image
import requests

model_id = "yifeihu/TB-OCR-preview-0.1"

DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = AutoModelForCausalLM.from_pretrained(
  model_id, 
  device_map="cuda", 
  trust_remote_code=True, 
  torch_dtype="auto", 
  _attn_implementation='flash_attention_2',
  quantization_config=BitsAndBytesConfig(load_in_4bit=True) # Optional: Load model in 4-bit mode to save memory
)

processor = AutoProcessor.from_pretrained(model_id, 
  trust_remote_code=True, 
  num_crops=16
)

def phi_ocr(image_url):
    question = "Convert the text to markdown format." # this is required
    image = Image.open(requests.get(image_url, stream=True).raw)
    prompt_message = [{
        'role': 'user',
        'content': f'<|image_1|>\n{question}',
    }]

    prompt = processor.tokenizer.apply_chat_template(prompt_message, tokenize=False, add_generation_prompt=True)
    inputs = processor(prompt, [image], return_tensors="pt").to("cuda") 

    generation_args = { 
        "max_new_tokens": 1024, 
        "temperature": 0.1, 
        "do_sample": False
    }

    generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args
    )

    generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
    response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] 

    response = response.split("<image_end>")[0] # remove the image_end token 

    return response

test_image_url = "https://huggingface.co/yifeihu/TB-OCR-preview-0.1/resolve/main/sample_input_1.png?download=true"

response = phi_ocr(test_image_url)

print(response)

About this preview checkpoint

This is a preview model to verify the quality of a dataset from a synthetic data pipeline. The preview checkpoint only used ~250k image-text pairs (~50M tokens).

The current model is based on Phi-3.5-vision. Smaller models with even stronger performance are currently being trained or tested.

Downloads last month
514
Safetensors
Model size
4.25B params
Tensor type
BF16
Β·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Model tree for yifeihu/TB-OCR-preview-0.1

Finetuned
(12)
this model

Spaces using yifeihu/TB-OCR-preview-0.1 5