Resnet / config.json
yjwsb233's picture
Training in progress, step 100
63fbc3d
{
"_name_or_path": "microsoft/resnet-101",
"architectures": [
"ResNetForImageClassification"
],
"depths": [
3,
4,
23,
3
],
"downsample_in_first_stage": false,
"embedding_size": 64,
"hidden_act": "relu",
"hidden_sizes": [
256,
512,
1024,
2048
],
"id2label": {
"0": "beverage cans",
"1": "cardboard",
"10": "laptops",
"11": "masks",
"12": "medicines",
"13": "metal containers",
"14": "news paper",
"15": "other metal objects",
"16": "paper",
"17": "paper cups",
"18": "plastic bags",
"19": "plastic bottles",
"2": "cigarette butt",
"20": "plastic containers",
"21": "plastic cups",
"22": "small appliances",
"23": "smartphones",
"24": "spray cans",
"25": "syringe",
"26": "tetra pak",
"3": "clothes",
"4": "compost",
"5": "construction scrap",
"6": "electrical cables",
"7": "electronic chips",
"8": "glass",
"9": "gloves"
},
"label2id": {
"beverage cans": "0",
"cardboard": "1",
"cigarette butt": "2",
"clothes": "3",
"compost": "4",
"construction scrap": "5",
"electrical cables": "6",
"electronic chips": "7",
"glass": "8",
"gloves": "9",
"laptops": "10",
"masks": "11",
"medicines": "12",
"metal containers": "13",
"news paper": "14",
"other metal objects": "15",
"paper": "16",
"paper cups": "17",
"plastic bags": "18",
"plastic bottles": "19",
"plastic containers": "20",
"plastic cups": "21",
"small appliances": "22",
"smartphones": "23",
"spray cans": "24",
"syringe": "25",
"tetra pak": "26"
},
"layer_type": "bottleneck",
"model_type": "resnet",
"num_channels": 3,
"out_features": [
"stage4"
],
"out_indices": [
4
],
"problem_type": "single_label_classification",
"stage_names": [
"stem",
"stage1",
"stage2",
"stage3",
"stage4"
],
"torch_dtype": "float32",
"transformers_version": "4.30.2"
}