You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

SentenceTransformer based on intfloat/multilingual-e5-base

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-base on the rozetka_positive_pairs dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/multilingual-e5-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Dot Product
  • Training Dataset:
    • rozetka_positive_pairs

Model Sources

Full Model Architecture

RZTKSentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("yklymchuk-rztk/multilingual-e5-base-matryoshka2d-mnr-4-continue")
# Run inference
sentences = [
    'query: сумочка женская',
    'passage: Сумки Без бренда Для кого Для женщин Цвет Черный Стиль Повседневные Модель сумки Кросс-боди Материал Экокожа Страна регистрации бренда Украина Страна-производитель товара Китай Количество отделений 3 Форма Трапеция Застежка Магнит',
    'passage: Пенали Kite Гарантія 14 днів Колір Бірюзовий Стать Для дівчаток Матеріал Поліестер Кількість відділень 1 Кількість вантажних місць 1 Країна реєстрації бренда Німеччина Країна-виробник товару Китай Вага, г 350 Тип гарантійного талона Гарантія по чеку Особливості З наповненням Форма Книжка',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

  • Datasets: bm-full, core-uk-title, core-ru-title, core-uk-options, core-ru-options, options-uk-title, options-ru-title, options-uk-options, options-ru-options, rusisms-uk-title, rusisms-ru-title, rusisms-uk-options, rusisms-ru-options, rusisms_corrected-uk-title, rusisms_corrected-ru-title, rusisms_corrected-uk-options, rusisms_corrected-ru-options, core_typos-uk-title, core_typos-ru-title, core_typos-uk-options and core_typos-ru-options
  • Evaluated with InformationRetrievalEvaluator
Metric bm-full core-uk-title core-ru-title core-uk-options core-ru-options options-uk-title options-ru-title options-uk-options options-ru-options rusisms-uk-title rusisms-ru-title rusisms-uk-options rusisms-ru-options rusisms_corrected-uk-title rusisms_corrected-ru-title rusisms_corrected-uk-options rusisms_corrected-ru-options core_typos-uk-title core_typos-ru-title core_typos-uk-options core_typos-ru-options
dot_accuracy@1 0.4784 0.6304 0.6417 0.4949 0.4877 0.7572 0.7706 0.6325 0.637 0.6413 0.6698 0.5079 0.4984 0.712 0.7089 0.5538 0.5728 0.5452 0.5678 0.4251 0.423
dot_accuracy@3 0.6553 0.8542 0.8563 0.7464 0.7505 0.9376 0.931 0.8441 0.8374 0.7905 0.7778 0.6286 0.6476 0.8196 0.8291 0.7278 0.7215 0.7875 0.7803 0.6478 0.6509
dot_accuracy@5 0.7332 0.924 0.923 0.8378 0.8368 0.9666 0.9666 0.9109 0.8931 0.8286 0.8349 0.7175 0.7492 0.8703 0.8703 0.7848 0.7848 0.8491 0.8491 0.7433 0.7464
dot_accuracy@10 0.8284 0.9733 0.9692 0.9322 0.9292 0.9933 0.9933 0.9488 0.9465 0.8857 0.8921 0.7905 0.8063 0.9114 0.9114 0.8544 0.8608 0.9117 0.9076 0.8429 0.846
dot_precision@1 0.4784 0.6304 0.6417 0.4949 0.4877 0.7572 0.7706 0.6325 0.637 0.6413 0.6698 0.5079 0.4984 0.712 0.7089 0.5538 0.5728 0.5452 0.5678 0.4251 0.423
dot_precision@3 0.4862 0.6379 0.6472 0.499 0.4986 0.7491 0.7468 0.6221 0.6355 0.6635 0.6646 0.5058 0.5196 0.7184 0.7162 0.5738 0.5823 0.5493 0.5534 0.4182 0.4223
dot_precision@5 0.4876 0.6246 0.6333 0.4951 0.4975 0.7118 0.7122 0.6027 0.6071 0.6552 0.6578 0.5162 0.5276 0.7082 0.7038 0.5759 0.581 0.5277 0.5355 0.417 0.4158
dot_precision@10 0.491 0.5196 0.5253 0.454 0.452 0.5541 0.5506 0.4964 0.494 0.6235 0.626 0.5111 0.5178 0.6684 0.663 0.5646 0.5655 0.4459 0.4522 0.38 0.3767
dot_recall@1 0.0114 0.0643 0.0657 0.0496 0.0485 0.1154 0.1182 0.0925 0.0936 0.0413 0.0443 0.0327 0.032 0.0497 0.0489 0.0399 0.0391 0.0555 0.0579 0.0428 0.0421
dot_recall@3 0.0345 0.1942 0.1973 0.1508 0.1495 0.342 0.341 0.2759 0.2827 0.1171 0.117 0.0849 0.0855 0.1274 0.1283 0.1062 0.102 0.168 0.1699 0.1263 0.1276
dot_recall@5 0.0577 0.3155 0.3208 0.2482 0.2482 0.537 0.536 0.4409 0.4455 0.1783 0.1774 0.1413 0.1417 0.1973 0.1999 0.1658 0.163 0.2674 0.2724 0.2089 0.2077
dot_recall@10 0.1145 0.5135 0.519 0.4471 0.4449 0.7925 0.7883 0.6951 0.6956 0.3101 0.3078 0.2518 0.2545 0.341 0.3356 0.2843 0.2808 0.442 0.4493 0.3754 0.3729
dot_ndcg@10 0.4893 0.5825 0.5898 0.4895 0.4883 0.765 0.7638 0.659 0.661 0.6648 0.6683 0.5372 0.5433 0.7195 0.7127 0.5966 0.5987 0.501 0.5093 0.4117 0.4101
dot_mrr@10 0.5828 0.7525 0.7593 0.6383 0.6368 0.8501 0.8558 0.748 0.7464 0.7269 0.7408 0.5902 0.5972 0.7809 0.7793 0.6513 0.6614 0.6745 0.6865 0.5581 0.5589
dot_map@100 0.3628 0.5641 0.5729 0.4956 0.4952 0.7381 0.7395 0.6415 0.6452 0.5854 0.5923 0.4987 0.5053 0.6389 0.6395 0.5595 0.5634 0.4757 0.483 0.4095 0.4085

Information Retrieval

  • Datasets: bm-full--matryoshka_dim-768--, bm-full--matryoshka_dim-512--, bm-full--matryoshka_dim-256-- and bm-full--matryoshka_dim-128--
  • Evaluated with InformationRetrievalEvaluator
Metric bm-full--matryoshka_dim-768-- bm-full--matryoshka_dim-512-- bm-full--matryoshka_dim-256-- bm-full--matryoshka_dim-128--
dot_accuracy@1 0.4784 0.4759 0.4759 0.4522
dot_precision@1 0.4784 0.4759 0.4759 0.4522
dot_recall@1 0.0114 0.0114 0.0114 0.0106
dot_ndcg@1 0.4784 0.4759 0.4759 0.4522
dot_mrr@1 0.4784 0.4759 0.4759 0.4522
dot_map@100 0.3628 0.3601 0.3488 0.3247

Training Details

Training Dataset

rozetka_positive_pairs

  • Dataset: rozetka_positive_pairs
  • Size: 18,644,575 training samples
  • Columns: query and text
  • Approximate statistics based on the first 1000 samples:
    query text
    type string string
    details
    • min: 6 tokens
    • mean: 12.04 tokens
    • max: 30 tokens
    • min: 8 tokens
    • mean: 55.98 tokens
    • max: 512 tokens
  • Samples:
    query text
    query: xsiomi 9c скло passage: Защитные стекла Назначение Для мобильных телефонов Цвет Черный Теги Теги Наличие рамки C рамкой Форм-фактор Плоское Клеевой слой По всей поверхности
    query: xsiomi 9c скло passage: Захисне скло Glass Full Glue для Xiaomi Redmi 9A/9C/10A (Чорний)
    query: xsiomi 9c скло passage: Захисне скло Призначення Для мобільних телефонів Колір Чорний Теги Теги Наявність рамки З рамкою Форм-фактор Плоске Клейовий шар По всій поверхні
  • Loss: sentence_transformers_training.model.matryoshka2d_loss.RZTKMatryoshka2dLoss with these parameters:
    {
        "loss": "RZTKMultipleNegativesRankingLoss",
        "n_layers_per_step": 1,
        "last_layer_weight": 1.0,
        "prior_layers_weight": 1.0,
        "kl_div_weight": 1.0,
        "kl_temperature": 0.3,
        "matryoshka_dims": [
            768,
            512,
            256,
            128
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": 1
    }
    

Evaluation Dataset

rozetka_positive_pairs

  • Dataset: rozetka_positive_pairs
  • Size: 202,564 evaluation samples
  • Columns: query and text
  • Approximate statistics based on the first 1000 samples:
    query text
    type string string
    details
    • min: 6 tokens
    • mean: 8.57 tokens
    • max: 17 tokens
    • min: 8 tokens
    • mean: 53.17 tokens
    • max: 512 tokens
  • Samples:
    query text
    query: создаем нейронную сеть passage: Створюємо нейронну мережу
    query: создаем нейронную сеть passage: Научная и техническая литература Переплет Мягкий
    query: создаем нейронную сеть passage: Создаем нейронную сеть (1666498)
  • Loss: sentence_transformers_training.model.matryoshka2d_loss.RZTKMatryoshka2dLoss with these parameters:
    {
        "loss": "RZTKMultipleNegativesRankingLoss",
        "n_layers_per_step": 1,
        "last_layer_weight": 1.0,
        "prior_layers_weight": 1.0,
        "kl_div_weight": 1.0,
        "kl_temperature": 0.3,
        "matryoshka_dims": [
            768,
            512,
            256,
            128
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": 1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 88
  • per_device_eval_batch_size: 88
  • learning_rate: 2e-05
  • num_train_epochs: 5.0
  • warmup_ratio: 0.1
  • bf16: True
  • bf16_full_eval: True
  • tf32: True
  • dataloader_num_workers: 8
  • load_best_model_at_end: True
  • optim: adafactor
  • push_to_hub: True
  • hub_model_id: yklymchuk-rztk/multilingual-e5-base-matryoshka2d-mnr-4-continue
  • hub_private_repo: True
  • prompts: {'query': 'query: ', 'text': 'passage: '}
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 88
  • per_device_eval_batch_size: 88
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5.0
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: True
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 8
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adafactor
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: True
  • resume_from_checkpoint: None
  • hub_model_id: yklymchuk-rztk/multilingual-e5-base-matryoshka2d-mnr-4-continue
  • hub_strategy: every_save
  • hub_private_repo: True
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: {'query': 'query: ', 'text': 'passage: '}
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • ddp_static_graph: False
  • ddp_comm_hook: bf16
  • gradient_as_bucket_view: False
  • num_proc: 30

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss bm-full_dot_ndcg@10 core-uk-title_dot_ndcg@10 core-ru-title_dot_ndcg@10 core-uk-options_dot_ndcg@10 core-ru-options_dot_ndcg@10 options-uk-title_dot_ndcg@10 options-ru-title_dot_ndcg@10 options-uk-options_dot_ndcg@10 options-ru-options_dot_ndcg@10 rusisms-uk-title_dot_ndcg@10 rusisms-ru-title_dot_ndcg@10 rusisms-uk-options_dot_ndcg@10 rusisms-ru-options_dot_ndcg@10 rusisms_corrected-uk-title_dot_ndcg@10 rusisms_corrected-ru-title_dot_ndcg@10 rusisms_corrected-uk-options_dot_ndcg@10 rusisms_corrected-ru-options_dot_ndcg@10 core_typos-uk-title_dot_ndcg@10 core_typos-ru-title_dot_ndcg@10 core_typos-uk-options_dot_ndcg@10 core_typos-ru-options_dot_ndcg@10 bm-full--matryoshka_dim-768--_dot_ndcg@1 bm-full--matryoshka_dim-512--_dot_ndcg@1 bm-full--matryoshka_dim-256--_dot_ndcg@1 bm-full--matryoshka_dim-128--_dot_ndcg@1
2.7017 143100 0.7397 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.7167 143895 0.7745 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.7317 144690 0.8018 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.7467 145485 0.7712 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.7617 146280 0.7634 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.7767 147075 0.7801 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.7917 147870 0.7608 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.8067 148665 0.7886 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.8218 149460 0.7534 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.8368 150255 0.7848 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.8518 151050 0.7657 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.8668 151845 0.7943 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.8818 152640 0.7683 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.8968 153435 0.7555 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.9118 154230 0.7575 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.9268 155025 0.7253 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.9418 155820 0.7538 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.9568 156615 0.7708 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.9719 157410 0.7582 - - - - - - - - - - - - - - - - - - - - - - - - - -
2.9869 158205 0.7987 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.0002 158910 - 0.4537 - - - - - - - - - - - - - - - - - - - - - - - - -
3.0019 159000 0.7604 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.0169 159795 0.7485 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.0319 160590 0.7761 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.0469 161385 0.7606 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.0619 162180 0.7752 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.0769 162975 0.7624 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.0919 163770 0.7764 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.1070 164565 0.7714 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.1220 165360 0.7916 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.1370 166155 0.7484 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.1520 166950 0.7751 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.1670 167745 0.7634 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.1820 168540 0.7549 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.1970 169335 0.7538 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.2120 170130 0.7545 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.2270 170925 0.7738 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.2420 171720 0.7513 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.2570 172515 0.7479 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.2721 173310 0.751 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.2871 174105 0.7583 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.3002 174801 - 0.4436 - - - - - - - - - - - - - - - - - - - - - - - - -
3.3021 174900 0.7593 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.3171 175695 0.7346 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.3321 176490 0.759 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.3471 177285 0.7639 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.3621 178080 0.7699 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.3771 178875 0.7463 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.3921 179670 0.7659 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.4071 180465 0.7811 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.4221 181260 0.7658 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.4372 182055 0.7529 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.4522 182850 0.7448 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.4672 183645 0.7308 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.4822 184440 0.7567 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.4972 185235 0.7634 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.5122 186030 0.7619 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.5272 186825 0.7184 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.5422 187620 0.7555 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.5572 188415 0.7801 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.5722 189210 0.7764 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.5873 190005 0.7659 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.6002 190692 - 0.4584 - - - - - - - - - - - - - - - - - - - - - - - - -
3.6023 190800 0.7329 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.6173 191595 0.7439 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.6323 192390 0.7605 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.6473 193185 0.7511 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.6623 193980 0.7458 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.6773 194775 0.7508 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.6923 195570 0.7467 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.7073 196365 0.7463 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.7223 197160 0.7389 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.7373 197955 0.772 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.7524 198750 0.7859 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.7674 199545 0.7543 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.7824 200340 0.7635 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.7974 201135 0.7706 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.8124 201930 0.7748 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.8274 202725 0.7552 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.8424 203520 0.7484 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.8574 204315 0.7535 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.8724 205110 0.7615 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.8874 205905 0.7536 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.9002 206583 - 0.4789 - - - - - - - - - - - - - - - - - - - - - - - - -
3.9024 206700 0.7566 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.9175 207495 0.7747 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.9325 208290 0.7526 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.9475 209085 0.759 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.9625 209880 0.7477 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.9775 210675 0.7632 - - - - - - - - - - - - - - - - - - - - - - - - - -
3.9925 211470 0.7625 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.0075 212265 0.7535 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.0225 213060 0.745 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.0376 213855 0.7311 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.0526 214650 0.7327 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.0676 215445 0.7385 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.0826 216240 0.7521 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.0976 217035 0.7579 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.1126 217830 0.7378 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.1276 218625 0.7641 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.1426 219420 0.7637 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.1576 220215 0.7676 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.1726 221010 0.7789 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.1876 221805 0.7677 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.2003 222474 - 0.4703 - - - - - - - - - - - - - - - - - - - - - - - - -
4.2027 222600 0.77 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.2177 223395 0.7386 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.2327 224190 0.7432 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.2477 224985 0.7436 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.2627 225780 0.7366 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.2777 226575 0.7254 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.2927 227370 0.7594 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.3077 228165 0.7646 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.3227 228960 0.7524 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.3377 229755 0.7625 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.3527 230550 0.7647 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.3678 231345 0.7425 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.3828 232140 0.7568 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.3978 232935 0.7809 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.4128 233730 0.7762 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.4278 234525 0.7579 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.4428 235320 0.7625 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.4578 236115 0.7664 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.4728 236910 0.7357 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.4878 237705 0.7316 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.5003 238365 - 0.4811 - - - - - - - - - - - - - - - - - - - - - - - - -
4.5028 238500 0.7568 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.5179 239295 0.7522 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.5329 240090 0.7529 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.5479 240885 0.7468 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.5629 241680 0.7304 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.5779 242475 0.749 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.5929 243270 0.7391 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.6079 244065 0.7483 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.6229 244860 0.7682 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.6379 245655 0.7636 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.6529 246450 0.7705 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.6679 247245 0.7516 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.6830 248040 0.7632 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.6980 248835 0.7659 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.7130 249630 0.7254 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.7280 250425 0.7163 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.7430 251220 0.7552 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.7580 252015 0.7654 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.7730 252810 0.7308 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.7880 253605 0.7513 - - - - - - - - - - - - - - - - - - - - - - - - - -
4.8003 254256 - 0.4811 0.4893 0.5825 0.5898 0.4895 0.4883 0.7650 0.7638 0.6590 0.6610 0.6648 0.6683 0.5372 0.5433 0.7195 0.7127 0.5966 0.5987 0.5010 0.5093 0.4117 0.4101 0.4784 0.4759 0.4759 0.4522
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.10
  • Sentence Transformers: 3.3.0
  • Transformers: 4.46.3
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.1.1
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
6
Safetensors
Model size
278M params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yklymchuk-rztk/multilingual-e5-base-matryoshka2d-mnr-4-continue

Quantized
(6)
this model

Evaluation results