w2v-bert-2.0-600m-turkish-colab

This model is a fine-tuned version of ylacombe/w2v-bert-2.0 on the common_voice_16_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1441
  • Wer: 0.1373

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.252 0.29 400 0.3121 0.3150
0.2541 0.58 800 0.3786 0.3441
0.2505 0.88 1200 0.4106 0.3766
0.1958 1.17 1600 0.2974 0.2877
0.1686 1.46 2000 0.2854 0.2736
0.1498 1.75 2400 0.2508 0.2486
0.1343 2.05 2800 0.2315 0.2263
0.1045 2.34 3200 0.2207 0.2243
0.0983 2.63 3600 0.2109 0.2046
0.089 2.92 4000 0.1970 0.1896
0.0726 3.21 4400 0.1963 0.1799
0.0552 3.51 4800 0.1879 0.1778
0.0573 3.8 5200 0.1821 0.1693
0.0421 4.09 5600 0.1602 0.1517
0.0363 4.38 6000 0.1564 0.1485
0.0345 4.67 6400 0.1466 0.1437
0.0294 4.97 6800 0.1441 0.1373

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
13
Safetensors
Model size
606M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ylacombe/w2v-bert-2.0-600m-turkish-colab

Finetuned
(16)
this model
Finetunes
1 model

Evaluation results