ylacombe's picture
End of training
47dfe22 verified
metadata
base_model: ylacombe/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_6_1
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-turkish-colab-CV6.1
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_6_1
          type: common_voice_6_1
          config: tr
          split: test
          args: tr
        metrics:
          - name: Wer
            type: wer
            value: 0.18384230415687877

w2v-bert-2.0-turkish-colab-CV6.1

This model is a fine-tuned version of ylacombe/w2v-bert-2.0 on the common_voice_6_1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1978
  • Wer: 0.1838

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.4016 0.92 100 2.4338 1.0428
0.5644 1.83 200 0.2224 0.1936
0.1692 2.75 300 0.1978 0.1838

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0