|
--- |
|
language: |
|
- ga |
|
- en |
|
license: apache-2.0 |
|
base_model: openai/whisper-large |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- ymoslem/IWSLT2023-GA-EN |
|
- ymoslem/FLEURS-GA-EN |
|
- ymoslem/BitesizeIrish-GA-EN |
|
- ymoslem/SpokenWords-GA-EN-MTed |
|
metrics: |
|
- bleu |
|
- wer |
|
- chrf |
|
model-index: |
|
- name: Whisper Large GA-EN Speech Translation |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia |
|
type: ymoslem/IWSLT2023-GA-EN |
|
metrics: |
|
- name: Bleu |
|
type: bleu |
|
value: 30.16 |
|
- name: Wer |
|
type: wer |
|
value: 65.60108059432687 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Large GA-EN Speech Translation |
|
|
|
This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1318 |
|
- Bleu: 31.26 |
|
- Chrf: 50.41 |
|
- Wer: 62.3143 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 0.03 |
|
- training_steps: 3000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Bleu | Chrf | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:-----:|:-----:|:---------------:|:--------:| |
|
| 3.1547 | 0.03 | 100 | 3.75 | 18.71 | 2.4173 | 124.0882 | |
|
| 2.6996 | 0.07 | 200 | 8.16 | 25.45 | 2.1329 | 114.1378 | |
|
| 2.4841 | 0.1 | 300 | 6.4 | 23.6 | 2.0262 | 158.1720 | |
|
| 2.4706 | 0.13 | 400 | 9.16 | 27.67 | 1.9688 | 120.0810 | |
|
| 2.3575 | 0.16 | 500 | 13.66 | 31.5 | 1.8284 | 100.8555 | |
|
| 2.1916 | 0.2 | 600 | 12.97 | 31.8 | 1.7486 | 110.1756 | |
|
| 2.1353 | 0.23 | 700 | 16.7 | 33.52 | 1.7568 | 86.8528 | |
|
| 1.9885 | 0.26 | 800 | 19.34 | 35.35 | 1.6395 | 78.7033 | |
|
| 1.9126 | 0.3 | 900 | 20.21 | 36.28 | 1.5658 | 78.2080 | |
|
| 1.6418 | 0.33 | 1000 | 18.61 | 38.49 | 1.4998 | 86.8528 | |
|
| 1.5782 | 0.36 | 1100 | 22.91 | 40.04 | 1.4716 | 71.0941 | |
|
| 1.4899 | 0.39 | 1200 | 21.55 | 40.92 | 1.4444 | 78.7933 | |
|
| 1.3155 | 0.43 | 1300 | 24.95 | 42.05 | 1.3934 | 70.9140 | |
|
| 1.4144 | 0.46 | 1400 | 28.38 | 46.18 | 1.2791 | 65.8262 | |
|
| 1.1949 | 0.49 | 1500 | 26.95 | 45.84 | 1.2879 | 70.6889 | |
|
| 1.0179 | 0.53 | 1600 | 26.12 | 46.4 | 1.2624 | 69.6983 | |
|
| 1.0935 | 0.56 | 1700 | 28.51 | 48.24 | 1.2076 | 67.4021 | |
|
| 1.061 | 0.59 | 1800 | 27.42 | 48.83 | 1.1812 | 71.4543 | |
|
| 1.0955 | 0.62 | 1900 | 31.32 | 49.91 | 1.1503 | 62.9896 | |
|
| 1.0607 | 0.66 | 2000 | 31.26 | 50.41 | 1.1318 | 62.3143 | |
|
| 1.1135 | 0.6897 | 2100 | 1.2135| 26.57 | 46.18 | 69.7884 | |
|
| 0.9819 | 0.7225 | 2200 | 1.2252| 26.95 | 49.47 | 65.0158 | |
|
| 0.9909 | 0.7553 | 2300 | 1.2072| 30.35 | 46.49 | 63.3048 | |
|
| 0.9521 | 0.7882 | 2400 | 1.2130| 24.76 | 46.44 | 70.6889 | |
|
| 0.8245 | 0.8210 | 2500 | 1.1724| 24.84 | 47.05 | 78.1630 | |
|
| 0.8303 | 0.8539 | 2600 | 1.1812| 27.56 | 47.48 | 70.1036 | |
|
| 0.6934 | 0.8867 | 2700 | 1.1716| 31.61 | 50.4 | 63.8001 | |
|
| 0.7117 | 0.9195 | 2800 | 1.1650| 30.82 | 49.95 | 65.0158 | |
|
| 0.6944 | 0.9524 | 2900 | 1.1516| 31.21 | 49.8 | 63.5750 | |
|
| 0.7132 | 0.9852 | 3000 | 1.1390| 30.16 | 49.77 | 65.6011 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.19.1 |