Quality Estimation for Machine Translation

This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the ymoslem/wmt-da-human-evaluation dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0752

Model description

This model is for reference-free quality estimation (QE) of machine translation (MT) systems.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 20000

Training results

Training Loss Epoch Step Validation Loss
0.0743 0.0502 1000 0.0598
0.0853 0.1004 2000 0.0745
0.0829 0.1506 3000 0.0726
0.0814 0.2008 4000 0.0872
0.0805 0.2509 5000 0.0715
0.0782 0.3011 6000 0.0819
0.0789 0.3513 7000 0.0733
0.0791 0.4015 8000 0.0748
0.0787 0.4517 9000 0.0759
0.0761 0.5019 10000 0.0725
0.0746 0.5521 11000 0.0745
0.0762 0.6023 12000 0.0750
0.077 0.6524 13000 0.0725
0.0777 0.7026 14000 0.0737
0.0764 0.7528 15000 0.0745
0.0781 0.8030 16000 0.0750
0.0748 0.8532 17000 0.0765
0.0768 0.9034 18000 0.0750
0.0737 0.9536 19000 0.0759
0.0769 1.0038 20000 0.0752

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.4.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0

Inference

  1. Install the required libraries.
pip3 install --upgrade datasets accelerate transformers
pip3 install --upgrade flash_attn triton
  1. Load the test dataset.
from datasets import load_dataset

test_dataset = load_dataset("ymoslem/wmt-da-human-evaluation",
                             split="test",
                             trust_remote_code=True
                            )
print(test_dataset)
  1. Load the model and tokenizer:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch

# Load the fine-tuned model and tokenizer
model_name = "ymoslem/ModernBERT-large-qe-v1"
model = AutoModelForSequenceClassification.from_pretrained(
    model_name,
    device_map="auto",
    torch_dtype=torch.bfloat16,
    attn_implementation="flash_attention_2",
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Move model to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
model.eval()
  1. Prepare the dataset. Each source segment src and target segment tgt are separated by the sep_token, which is '</s>' for ModernBERT.
sep_token = tokenizer.sep_token
input_test_texts = [f"{src} {sep_token} {tgt}" for src, tgt in zip(test_dataset["src"], test_dataset["mt"])]
  1. Generate predictions.

If you print model.config.problem_type, the output is regression. Still, you can use the "text-classification" pipeline as follows (cf. pipeline documentation):

from transformers import pipeline

classifier = pipeline("text-classification",
                      model=model_name,
                      tokenizer=tokenizer,
                      device=0,
                     )

predictions = classifier(input_test_texts,
                         batch_size=128,
                         truncation=True,
                         padding="max_length",
                         max_length=tokenizer.model_max_length,
                       )
predictions = [prediction["score"] for prediction in predictions]

Alternatively, you can use an elaborate version of the code, which is slightly faster and provides more control.

from torch.utils.data import DataLoader
import torch
from tqdm.auto import tqdm

# Tokenization function
def process_batch(batch, tokenizer, device):
    sep_token = tokenizer.sep_token
    input_texts = [f"{src} {sep_token} {tgt}" for src, tgt in zip(batch["src"], batch["mt"])]
    tokens = tokenizer(input_texts,
                       truncation=True,
                       padding="max_length",
                       max_length=tokenizer.model_max_length,
                       return_tensors="pt",
                      ).to(device)
    return tokens
    


# Create a DataLoader for batching
test_dataloader = DataLoader(test_dataset, 
                             batch_size=128,   # Adjust batch size as needed
                             shuffle=False)


# List to store all predictions
predictions = []

with torch.no_grad():
    for batch in tqdm(test_dataloader, desc="Inference Progress", unit="batch"):

        tokens = process_batch(batch, tokenizer, device)
        
        # Forward pass: Generate model's logits
        outputs = model(**tokens)

        # Get logits (predictions)
        logits = outputs.logits

        # Extract the regression predicted values
        batch_predictions = logits.squeeze()

        # Extend the list with the predictions
        predictions.extend(batch_predictions.tolist())
Downloads last month
27
Safetensors
Model size
560M params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ymoslem/xlm-roberta-large-qe-v1

Finetuned
(345)
this model

Dataset used to train ymoslem/xlm-roberta-large-qe-v1

Collection including ymoslem/xlm-roberta-large-qe-v1

Evaluation results

  • Pearson Correlation on ymoslem/wmt-da-human-evaluation
    self-reported
    0.422
  • Mean Absolute Error on ymoslem/wmt-da-human-evaluation
    self-reported
    0.196
  • Root Mean Squared Error on ymoslem/wmt-da-human-evaluation
    self-reported
    0.245
  • R-Squared on ymoslem/wmt-da-human-evaluation
    self-reported
    0.245