Update README.md
Browse files
README.md
CHANGED
@@ -37,7 +37,29 @@ datasets:
|
|
37 |
- ymoslem/wmt-da-human-evaluation
|
38 |
model-index:
|
39 |
- name: Quality Estimation for Machine Translation
|
40 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
---
|
42 |
|
43 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -51,15 +73,7 @@ It achieves the following results on the evaluation set:
|
|
51 |
|
52 |
## Model description
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
## Intended uses & limitations
|
57 |
-
|
58 |
-
More information needed
|
59 |
-
|
60 |
-
## Training and evaluation data
|
61 |
-
|
62 |
-
More information needed
|
63 |
|
64 |
## Training procedure
|
65 |
|
@@ -106,3 +120,126 @@ The following hyperparameters were used during training:
|
|
106 |
- Pytorch 2.4.1+cu124
|
107 |
- Datasets 3.2.0
|
108 |
- Tokenizers 0.21.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
- ymoslem/wmt-da-human-evaluation
|
38 |
model-index:
|
39 |
- name: Quality Estimation for Machine Translation
|
40 |
+
results:
|
41 |
+
- task:
|
42 |
+
type: regression
|
43 |
+
dataset:
|
44 |
+
name: ymoslem/wmt-da-human-evaluation
|
45 |
+
type: QE
|
46 |
+
metrics:
|
47 |
+
- name: Pearson Correlation
|
48 |
+
type: Pearson
|
49 |
+
value: 0.422
|
50 |
+
- name: Mean Absolute Error
|
51 |
+
type: MAE
|
52 |
+
value: 0.196
|
53 |
+
- name: Root Mean Squared Error
|
54 |
+
type: RMSE
|
55 |
+
value: 0.245
|
56 |
+
- name: R-Squared
|
57 |
+
type: R2
|
58 |
+
value: 0.245
|
59 |
+
metrics:
|
60 |
+
- perplexity
|
61 |
+
- mae
|
62 |
+
- r_squared
|
63 |
---
|
64 |
|
65 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
73 |
|
74 |
## Model description
|
75 |
|
76 |
+
This model is for reference-free quality estimation (QE) of machine translation (MT) systems.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
## Training procedure
|
79 |
|
|
|
120 |
- Pytorch 2.4.1+cu124
|
121 |
- Datasets 3.2.0
|
122 |
- Tokenizers 0.21.0
|
123 |
+
|
124 |
+
## Inference
|
125 |
+
|
126 |
+
1. Install the required libraries.
|
127 |
+
|
128 |
+
```bash
|
129 |
+
pip3 install --upgrade datasets accelerate transformers
|
130 |
+
pip3 install --upgrade flash_attn triton
|
131 |
+
```
|
132 |
+
|
133 |
+
2. Load the test dataset.
|
134 |
+
|
135 |
+
```python
|
136 |
+
from datasets import load_dataset
|
137 |
+
|
138 |
+
test_dataset = load_dataset("ymoslem/wmt-da-human-evaluation",
|
139 |
+
split="test",
|
140 |
+
trust_remote_code=True
|
141 |
+
)
|
142 |
+
print(test_dataset)
|
143 |
+
```
|
144 |
+
|
145 |
+
3. Load the model and tokenizer:
|
146 |
+
|
147 |
+
```python
|
148 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
149 |
+
import torch
|
150 |
+
|
151 |
+
# Load the fine-tuned model and tokenizer
|
152 |
+
model_name = "ymoslem/ModernBERT-large-qe-v1"
|
153 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
154 |
+
model_name,
|
155 |
+
device_map="auto",
|
156 |
+
torch_dtype=torch.bfloat16,
|
157 |
+
attn_implementation="flash_attention_2",
|
158 |
+
)
|
159 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
160 |
+
|
161 |
+
# Move model to GPU if available
|
162 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
163 |
+
model.to(device)
|
164 |
+
model.eval()
|
165 |
+
```
|
166 |
+
|
167 |
+
4. Prepare the dataset. Each source segment `src` and target segment `tgt` are separated by the `sep_token`, which is `'</s>'` for ModernBERT.
|
168 |
+
|
169 |
+
```python
|
170 |
+
sep_token = tokenizer.sep_token
|
171 |
+
input_test_texts = [f"{src} {sep_token} {tgt}" for src, tgt in zip(test_dataset["src"], test_dataset["mt"])]
|
172 |
+
```
|
173 |
+
|
174 |
+
5. Generate predictions.
|
175 |
+
|
176 |
+
If you print `model.config.problem_type`, the output is `regression`.
|
177 |
+
Still, you can use the "text-classification" pipeline as follows (cf. [pipeline documentation](https://huggingface.co/docs/transformers/en/main_classes/pipelines#transformers.TextClassificationPipeline)):
|
178 |
+
|
179 |
+
```python
|
180 |
+
from transformers import pipeline
|
181 |
+
|
182 |
+
classifier = pipeline("text-classification",
|
183 |
+
model=model_name,
|
184 |
+
tokenizer=tokenizer,
|
185 |
+
device=0,
|
186 |
+
)
|
187 |
+
|
188 |
+
predictions = classifier(input_test_texts,
|
189 |
+
batch_size=128,
|
190 |
+
truncation=True,
|
191 |
+
padding="max_length",
|
192 |
+
max_length=tokenizer.model_max_length,
|
193 |
+
)
|
194 |
+
predictions = [prediction["score"] for prediction in predictions]
|
195 |
+
|
196 |
+
```
|
197 |
+
|
198 |
+
Alternatively, you can use an elaborate version of the code, which is slightly faster and provides more control.
|
199 |
+
|
200 |
+
```python
|
201 |
+
from torch.utils.data import DataLoader
|
202 |
+
import torch
|
203 |
+
from tqdm.auto import tqdm
|
204 |
+
|
205 |
+
# Tokenization function
|
206 |
+
def process_batch(batch, tokenizer, device):
|
207 |
+
sep_token = tokenizer.sep_token
|
208 |
+
input_texts = [f"{src} {sep_token} {tgt}" for src, tgt in zip(batch["src"], batch["mt"])]
|
209 |
+
tokens = tokenizer(input_texts,
|
210 |
+
truncation=True,
|
211 |
+
padding="max_length",
|
212 |
+
max_length=tokenizer.model_max_length,
|
213 |
+
return_tensors="pt",
|
214 |
+
).to(device)
|
215 |
+
return tokens
|
216 |
+
|
217 |
+
|
218 |
+
|
219 |
+
# Create a DataLoader for batching
|
220 |
+
test_dataloader = DataLoader(test_dataset,
|
221 |
+
batch_size=128, # Adjust batch size as needed
|
222 |
+
shuffle=False)
|
223 |
+
|
224 |
+
|
225 |
+
# List to store all predictions
|
226 |
+
predictions = []
|
227 |
+
|
228 |
+
with torch.no_grad():
|
229 |
+
for batch in tqdm(test_dataloader, desc="Inference Progress", unit="batch"):
|
230 |
+
|
231 |
+
tokens = process_batch(batch, tokenizer, device)
|
232 |
+
|
233 |
+
# Forward pass: Generate model's logits
|
234 |
+
outputs = model(**tokens)
|
235 |
+
|
236 |
+
# Get logits (predictions)
|
237 |
+
logits = outputs.logits
|
238 |
+
|
239 |
+
# Extract the regression predicted values
|
240 |
+
batch_predictions = logits.squeeze()
|
241 |
+
|
242 |
+
# Extend the list with the predictions
|
243 |
+
predictions.extend(batch_predictions.tolist())
|
244 |
+
```
|
245 |
+
|