bert-base-uncased-finetuned-swag

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1649
  • Accuracy: 0.4857

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 26 1.3860 0.3238
No log 2.0 52 1.3833 0.3238
No log 3.0 78 1.3547 0.3810
No log 4.0 104 1.3130 0.3905
No log 5.0 130 1.3733 0.4000
No log 6.0 156 1.6432 0.4476
No log 7.0 182 1.8118 0.4952
No log 8.0 208 2.0408 0.4571
No log 9.0 234 1.9043 0.4952
No log 10.0 260 1.9755 0.4952
No log 11.0 286 2.0813 0.4857
No log 12.0 312 2.0578 0.4571
No log 13.0 338 2.0979 0.4762
No log 14.0 364 2.1136 0.4857
No log 15.0 390 2.1649 0.4857

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
7
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the HF Inference API does not support transformers models with pipeline type multiple-choice

Model tree for yonadolev/bert-base-uncased-finetuned-swag

Finetuned
(2572)
this model