bic-tl-model

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000
  • Bleu: 8.6577
  • Gen Len: 9.5337

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
No log 1.0 11 2.8101 0.4192 9.6933
No log 2.0 22 2.4413 0.5091 9.8896
No log 3.0 33 2.1777 0.5912 9.9939
No log 4.0 44 1.9031 0.7161 9.7791
No log 5.0 55 1.6391 0.5207 9.6564
No log 6.0 66 1.4137 0.8978 9.6135
No log 7.0 77 1.1997 1.1307 9.6135
No log 8.0 88 1.0269 1.4498 9.638
No log 9.0 99 0.8257 1.9986 9.7423
No log 10.0 110 0.6801 2.1989 9.4417
No log 11.0 121 0.5581 2.5771 9.6687
No log 12.0 132 0.4526 2.7754 9.5951
No log 13.0 143 0.3840 3.3881 9.4479
No log 14.0 154 0.3263 3.767 9.589
No log 15.0 165 0.2600 4.1389 9.5399
No log 16.0 176 0.1992 4.6642 9.4785
No log 17.0 187 0.1552 5.3166 9.4724
No log 18.0 198 0.1273 5.5679 9.5153
No log 19.0 209 0.0899 6.497 9.4724
No log 20.0 220 0.0848 6.5853 9.6074
No log 21.0 231 0.0564 7.0719 9.4847
No log 22.0 242 0.0583 7.1069 9.5521
No log 23.0 253 0.0379 7.6262 9.5521
No log 24.0 264 0.0362 7.2957 9.5031
No log 25.0 275 0.0341 8.1019 9.5767
No log 26.0 286 0.0320 8.1036 9.6012
No log 27.0 297 0.0166 8.3655 9.5337
No log 28.0 308 0.0190 8.1402 9.5337
No log 29.0 319 0.0123 8.2834 9.5399
No log 30.0 330 0.0104 8.4782 9.5337
No log 31.0 341 0.0092 8.1852 9.5337
No log 32.0 352 0.0086 8.5036 9.5276
No log 33.0 363 0.0057 8.3105 9.5337
No log 34.0 374 0.0049 8.3607 9.5337
No log 35.0 385 0.0055 8.3729 9.5399
No log 36.0 396 0.0070 8.5598 9.546
No log 37.0 407 0.0088 8.1822 9.5276
No log 38.0 418 0.0061 8.2457 9.5276
No log 39.0 429 0.0054 8.4559 9.5276
No log 40.0 440 0.0052 8.6455 9.5399
No log 41.0 451 0.0065 8.6455 9.5399
No log 42.0 462 0.0017 8.6577 9.5337
No log 43.0 473 0.0035 8.638 9.5337
No log 44.0 484 0.0022 8.6577 9.5337
No log 45.0 495 0.0016 8.5791 9.5337
0.7779 46.0 506 0.0025 8.5791 9.5337
0.7779 47.0 517 0.0014 8.5791 9.5337
0.7779 48.0 528 0.0015 8.5791 9.5337
0.7779 49.0 539 0.0022 8.4109 9.5337
0.7779 50.0 550 0.0014 8.591 9.5337
0.7779 51.0 561 0.0021 8.6455 9.5399
0.7779 52.0 572 0.0011 8.6577 9.5337
0.7779 53.0 583 0.0010 8.6577 9.5337
0.7779 54.0 594 0.0016 8.6036 9.5337
0.7779 55.0 605 0.0009 8.6083 9.5337
0.7779 56.0 616 0.0007 8.6577 9.5337
0.7779 57.0 627 0.0009 8.6577 9.5337
0.7779 58.0 638 0.0035 8.653 9.5337
0.7779 59.0 649 0.0007 8.6577 9.5337
0.7779 60.0 660 0.0003 8.6577 9.5337
0.7779 61.0 671 0.0004 8.6577 9.5337
0.7779 62.0 682 0.0007 8.6577 9.5337
0.7779 63.0 693 0.0004 8.6577 9.5337
0.7779 64.0 704 0.0003 8.6577 9.5337
0.7779 65.0 715 0.0004 8.6577 9.5337
0.7779 66.0 726 0.0002 8.6577 9.5337
0.7779 67.0 737 0.0002 8.6577 9.5337
0.7779 68.0 748 0.0003 8.6577 9.5337
0.7779 69.0 759 0.0007 8.6211 9.5337
0.7779 70.0 770 0.0006 8.6577 9.5337
0.7779 71.0 781 0.0001 8.6577 9.5337
0.7779 72.0 792 0.0001 8.6577 9.5337
0.7779 73.0 803 0.0010 8.6577 9.5337
0.7779 74.0 814 0.0002 8.6577 9.5337
0.7779 75.0 825 0.0005 8.6577 9.5337
0.7779 76.0 836 0.0005 8.6577 9.5337
0.7779 77.0 847 0.0006 8.6577 9.5337
0.7779 78.0 858 0.0003 8.6577 9.5337
0.7779 79.0 869 0.0001 8.6577 9.5337
0.7779 80.0 880 0.0001 8.6577 9.5337
0.7779 81.0 891 0.0001 8.6577 9.5337
0.7779 82.0 902 0.0001 8.6577 9.5337
0.7779 83.0 913 0.0002 8.6577 9.5337
0.7779 84.0 924 0.0005 8.6577 9.5337
0.7779 85.0 935 0.0003 8.6577 9.5337
0.7779 86.0 946 0.0000 8.6577 9.5337
0.7779 87.0 957 0.0001 8.6577 9.5337
0.7779 88.0 968 0.0042 8.653 9.5337
0.7779 89.0 979 0.0001 8.6577 9.5337
0.7779 90.0 990 0.0002 8.6355 9.5337
0.0387 91.0 1001 0.0001 8.6577 9.5337
0.0387 92.0 1012 0.0000 8.6577 9.5337
0.0387 93.0 1023 0.0000 8.6577 9.5337
0.0387 94.0 1034 0.0001 8.6577 9.5337
0.0387 95.0 1045 0.0002 8.591 9.5337
0.0387 96.0 1056 0.0003 8.6577 9.5337
0.0387 97.0 1067 0.0001 8.6577 9.5337
0.0387 98.0 1078 0.0000 8.6577 9.5337
0.0387 99.0 1089 0.0000 8.6577 9.5337
0.0387 100.0 1100 0.0000 8.6577 9.5337
0.0387 101.0 1111 0.0000 8.6577 9.5337
0.0387 102.0 1122 0.0000 8.6577 9.5337
0.0387 103.0 1133 0.0000 8.6577 9.5337
0.0387 104.0 1144 0.0000 8.6577 9.5337
0.0387 105.0 1155 0.0000 8.6577 9.5337
0.0387 106.0 1166 0.0000 8.6577 9.5337
0.0387 107.0 1177 0.0000 8.6577 9.5337
0.0387 108.0 1188 0.0000 8.6577 9.5337
0.0387 109.0 1199 0.0000 8.6577 9.5337
0.0387 110.0 1210 0.0000 8.6577 9.5337
0.0387 111.0 1221 0.0000 8.6577 9.5337
0.0387 112.0 1232 0.0000 8.6577 9.5337
0.0387 113.0 1243 0.0000 8.6577 9.5337
0.0387 114.0 1254 0.0000 8.6577 9.5337
0.0387 115.0 1265 0.0002 8.6036 9.5337
0.0387 116.0 1276 0.0001 8.6577 9.5337
0.0387 117.0 1287 0.0000 8.6577 9.5337
0.0387 118.0 1298 0.0000 8.6577 9.5337
0.0387 119.0 1309 0.0000 8.6577 9.5337
0.0387 120.0 1320 0.0012 8.5758 9.5337
0.0387 121.0 1331 0.0010 8.5758 9.5337
0.0387 122.0 1342 0.0003 8.6577 9.5337
0.0387 123.0 1353 0.0000 8.6577 9.5337
0.0387 124.0 1364 0.0000 8.6577 9.5337
0.0387 125.0 1375 0.0000 8.6577 9.5337
0.0387 126.0 1386 0.0000 8.6577 9.5337
0.0387 127.0 1397 0.0000 8.6577 9.5337
0.0387 128.0 1408 0.0000 8.6577 9.5337
0.0387 129.0 1419 0.0000 8.6577 9.5337
0.0387 130.0 1430 0.0000 8.6577 9.5337
0.0387 131.0 1441 0.0000 8.6577 9.5337
0.0387 132.0 1452 0.0000 8.6577 9.5337
0.0387 133.0 1463 0.0000 8.6577 9.5337
0.0387 134.0 1474 0.0000 8.6577 9.5337
0.0387 135.0 1485 0.0000 8.6577 9.5337
0.0387 136.0 1496 0.0000 8.6577 9.5337
0.0123 137.0 1507 0.0000 8.6577 9.5337
0.0123 138.0 1518 0.0000 8.6577 9.5337
0.0123 139.0 1529 0.0000 8.6577 9.5337
0.0123 140.0 1540 0.0000 8.6577 9.5337
0.0123 141.0 1551 0.0000 8.6577 9.5337
0.0123 142.0 1562 0.0000 8.6577 9.5337
0.0123 143.0 1573 0.0000 8.6577 9.5337
0.0123 144.0 1584 0.0000 8.6577 9.5337
0.0123 145.0 1595 0.0000 8.6577 9.5337
0.0123 146.0 1606 0.0000 8.6577 9.5337
0.0123 147.0 1617 0.0000 8.6577 9.5337
0.0123 148.0 1628 0.0000 8.6577 9.5337
0.0123 149.0 1639 0.0000 8.6577 9.5337
0.0123 150.0 1650 0.0000 8.6577 9.5337
0.0123 151.0 1661 0.0000 8.6577 9.5337
0.0123 152.0 1672 0.0000 8.6577 9.5337
0.0123 153.0 1683 0.0000 8.6577 9.5337
0.0123 154.0 1694 0.0000 8.6577 9.5337
0.0123 155.0 1705 0.0000 8.6577 9.5337
0.0123 156.0 1716 0.0000 8.6577 9.5337
0.0123 157.0 1727 0.0000 8.6577 9.5337
0.0123 158.0 1738 0.0000 8.6577 9.5337
0.0123 159.0 1749 0.0000 8.6577 9.5337
0.0123 160.0 1760 0.0000 8.6577 9.5337
0.0123 161.0 1771 0.0000 8.6577 9.5337
0.0123 162.0 1782 0.0000 8.6577 9.5337
0.0123 163.0 1793 0.0000 8.6577 9.5337
0.0123 164.0 1804 0.0000 8.6577 9.5337
0.0123 165.0 1815 0.0000 8.6577 9.5337
0.0123 166.0 1826 0.0000 8.6577 9.5337
0.0123 167.0 1837 0.0000 8.6577 9.5337
0.0123 168.0 1848 0.0000 8.6577 9.5337
0.0123 169.0 1859 0.0000 8.6577 9.5337
0.0123 170.0 1870 0.0000 8.6577 9.5337
0.0123 171.0 1881 0.0000 8.6577 9.5337
0.0123 172.0 1892 0.0000 8.6577 9.5337
0.0123 173.0 1903 0.0000 8.6577 9.5337
0.0123 174.0 1914 0.0000 8.6577 9.5337
0.0123 175.0 1925 0.0000 8.6577 9.5337
0.0123 176.0 1936 0.0000 8.6577 9.5337
0.0123 177.0 1947 0.0000 8.6577 9.5337
0.0123 178.0 1958 0.0000 8.6577 9.5337
0.0123 179.0 1969 0.0000 8.6577 9.5337
0.0123 180.0 1980 0.0000 8.6577 9.5337
0.0123 181.0 1991 0.0000 8.6577 9.5337
0.0053 182.0 2002 0.0000 8.6577 9.5337
0.0053 183.0 2013 0.0000 8.6577 9.5337
0.0053 184.0 2024 0.0000 8.6577 9.5337
0.0053 185.0 2035 0.0000 8.6577 9.5337
0.0053 186.0 2046 0.0000 8.6577 9.5337
0.0053 187.0 2057 0.0000 8.6577 9.5337
0.0053 188.0 2068 0.0000 8.6577 9.5337
0.0053 189.0 2079 0.0000 8.6577 9.5337
0.0053 190.0 2090 0.0000 8.6577 9.5337
0.0053 191.0 2101 0.0000 8.6577 9.5337
0.0053 192.0 2112 0.0000 8.6577 9.5337
0.0053 193.0 2123 0.0000 8.6577 9.5337
0.0053 194.0 2134 0.0000 8.6577 9.5337
0.0053 195.0 2145 0.0000 8.6577 9.5337
0.0053 196.0 2156 0.0000 8.6577 9.5337
0.0053 197.0 2167 0.0000 8.6577 9.5337
0.0053 198.0 2178 0.0000 8.6577 9.5337
0.0053 199.0 2189 0.0000 8.6577 9.5337
0.0053 200.0 2200 0.0000 8.6577 9.5337

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
11
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for youdiniplays/bic-tl-model

Base model

google-t5/t5-small
Finetuned
(1637)
this model