bic-tl-model
This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0000
- Bleu: 8.6577
- Gen Len: 9.5337
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
---|---|---|---|---|---|
No log | 1.0 | 11 | 2.8101 | 0.4192 | 9.6933 |
No log | 2.0 | 22 | 2.4413 | 0.5091 | 9.8896 |
No log | 3.0 | 33 | 2.1777 | 0.5912 | 9.9939 |
No log | 4.0 | 44 | 1.9031 | 0.7161 | 9.7791 |
No log | 5.0 | 55 | 1.6391 | 0.5207 | 9.6564 |
No log | 6.0 | 66 | 1.4137 | 0.8978 | 9.6135 |
No log | 7.0 | 77 | 1.1997 | 1.1307 | 9.6135 |
No log | 8.0 | 88 | 1.0269 | 1.4498 | 9.638 |
No log | 9.0 | 99 | 0.8257 | 1.9986 | 9.7423 |
No log | 10.0 | 110 | 0.6801 | 2.1989 | 9.4417 |
No log | 11.0 | 121 | 0.5581 | 2.5771 | 9.6687 |
No log | 12.0 | 132 | 0.4526 | 2.7754 | 9.5951 |
No log | 13.0 | 143 | 0.3840 | 3.3881 | 9.4479 |
No log | 14.0 | 154 | 0.3263 | 3.767 | 9.589 |
No log | 15.0 | 165 | 0.2600 | 4.1389 | 9.5399 |
No log | 16.0 | 176 | 0.1992 | 4.6642 | 9.4785 |
No log | 17.0 | 187 | 0.1552 | 5.3166 | 9.4724 |
No log | 18.0 | 198 | 0.1273 | 5.5679 | 9.5153 |
No log | 19.0 | 209 | 0.0899 | 6.497 | 9.4724 |
No log | 20.0 | 220 | 0.0848 | 6.5853 | 9.6074 |
No log | 21.0 | 231 | 0.0564 | 7.0719 | 9.4847 |
No log | 22.0 | 242 | 0.0583 | 7.1069 | 9.5521 |
No log | 23.0 | 253 | 0.0379 | 7.6262 | 9.5521 |
No log | 24.0 | 264 | 0.0362 | 7.2957 | 9.5031 |
No log | 25.0 | 275 | 0.0341 | 8.1019 | 9.5767 |
No log | 26.0 | 286 | 0.0320 | 8.1036 | 9.6012 |
No log | 27.0 | 297 | 0.0166 | 8.3655 | 9.5337 |
No log | 28.0 | 308 | 0.0190 | 8.1402 | 9.5337 |
No log | 29.0 | 319 | 0.0123 | 8.2834 | 9.5399 |
No log | 30.0 | 330 | 0.0104 | 8.4782 | 9.5337 |
No log | 31.0 | 341 | 0.0092 | 8.1852 | 9.5337 |
No log | 32.0 | 352 | 0.0086 | 8.5036 | 9.5276 |
No log | 33.0 | 363 | 0.0057 | 8.3105 | 9.5337 |
No log | 34.0 | 374 | 0.0049 | 8.3607 | 9.5337 |
No log | 35.0 | 385 | 0.0055 | 8.3729 | 9.5399 |
No log | 36.0 | 396 | 0.0070 | 8.5598 | 9.546 |
No log | 37.0 | 407 | 0.0088 | 8.1822 | 9.5276 |
No log | 38.0 | 418 | 0.0061 | 8.2457 | 9.5276 |
No log | 39.0 | 429 | 0.0054 | 8.4559 | 9.5276 |
No log | 40.0 | 440 | 0.0052 | 8.6455 | 9.5399 |
No log | 41.0 | 451 | 0.0065 | 8.6455 | 9.5399 |
No log | 42.0 | 462 | 0.0017 | 8.6577 | 9.5337 |
No log | 43.0 | 473 | 0.0035 | 8.638 | 9.5337 |
No log | 44.0 | 484 | 0.0022 | 8.6577 | 9.5337 |
No log | 45.0 | 495 | 0.0016 | 8.5791 | 9.5337 |
0.7779 | 46.0 | 506 | 0.0025 | 8.5791 | 9.5337 |
0.7779 | 47.0 | 517 | 0.0014 | 8.5791 | 9.5337 |
0.7779 | 48.0 | 528 | 0.0015 | 8.5791 | 9.5337 |
0.7779 | 49.0 | 539 | 0.0022 | 8.4109 | 9.5337 |
0.7779 | 50.0 | 550 | 0.0014 | 8.591 | 9.5337 |
0.7779 | 51.0 | 561 | 0.0021 | 8.6455 | 9.5399 |
0.7779 | 52.0 | 572 | 0.0011 | 8.6577 | 9.5337 |
0.7779 | 53.0 | 583 | 0.0010 | 8.6577 | 9.5337 |
0.7779 | 54.0 | 594 | 0.0016 | 8.6036 | 9.5337 |
0.7779 | 55.0 | 605 | 0.0009 | 8.6083 | 9.5337 |
0.7779 | 56.0 | 616 | 0.0007 | 8.6577 | 9.5337 |
0.7779 | 57.0 | 627 | 0.0009 | 8.6577 | 9.5337 |
0.7779 | 58.0 | 638 | 0.0035 | 8.653 | 9.5337 |
0.7779 | 59.0 | 649 | 0.0007 | 8.6577 | 9.5337 |
0.7779 | 60.0 | 660 | 0.0003 | 8.6577 | 9.5337 |
0.7779 | 61.0 | 671 | 0.0004 | 8.6577 | 9.5337 |
0.7779 | 62.0 | 682 | 0.0007 | 8.6577 | 9.5337 |
0.7779 | 63.0 | 693 | 0.0004 | 8.6577 | 9.5337 |
0.7779 | 64.0 | 704 | 0.0003 | 8.6577 | 9.5337 |
0.7779 | 65.0 | 715 | 0.0004 | 8.6577 | 9.5337 |
0.7779 | 66.0 | 726 | 0.0002 | 8.6577 | 9.5337 |
0.7779 | 67.0 | 737 | 0.0002 | 8.6577 | 9.5337 |
0.7779 | 68.0 | 748 | 0.0003 | 8.6577 | 9.5337 |
0.7779 | 69.0 | 759 | 0.0007 | 8.6211 | 9.5337 |
0.7779 | 70.0 | 770 | 0.0006 | 8.6577 | 9.5337 |
0.7779 | 71.0 | 781 | 0.0001 | 8.6577 | 9.5337 |
0.7779 | 72.0 | 792 | 0.0001 | 8.6577 | 9.5337 |
0.7779 | 73.0 | 803 | 0.0010 | 8.6577 | 9.5337 |
0.7779 | 74.0 | 814 | 0.0002 | 8.6577 | 9.5337 |
0.7779 | 75.0 | 825 | 0.0005 | 8.6577 | 9.5337 |
0.7779 | 76.0 | 836 | 0.0005 | 8.6577 | 9.5337 |
0.7779 | 77.0 | 847 | 0.0006 | 8.6577 | 9.5337 |
0.7779 | 78.0 | 858 | 0.0003 | 8.6577 | 9.5337 |
0.7779 | 79.0 | 869 | 0.0001 | 8.6577 | 9.5337 |
0.7779 | 80.0 | 880 | 0.0001 | 8.6577 | 9.5337 |
0.7779 | 81.0 | 891 | 0.0001 | 8.6577 | 9.5337 |
0.7779 | 82.0 | 902 | 0.0001 | 8.6577 | 9.5337 |
0.7779 | 83.0 | 913 | 0.0002 | 8.6577 | 9.5337 |
0.7779 | 84.0 | 924 | 0.0005 | 8.6577 | 9.5337 |
0.7779 | 85.0 | 935 | 0.0003 | 8.6577 | 9.5337 |
0.7779 | 86.0 | 946 | 0.0000 | 8.6577 | 9.5337 |
0.7779 | 87.0 | 957 | 0.0001 | 8.6577 | 9.5337 |
0.7779 | 88.0 | 968 | 0.0042 | 8.653 | 9.5337 |
0.7779 | 89.0 | 979 | 0.0001 | 8.6577 | 9.5337 |
0.7779 | 90.0 | 990 | 0.0002 | 8.6355 | 9.5337 |
0.0387 | 91.0 | 1001 | 0.0001 | 8.6577 | 9.5337 |
0.0387 | 92.0 | 1012 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 93.0 | 1023 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 94.0 | 1034 | 0.0001 | 8.6577 | 9.5337 |
0.0387 | 95.0 | 1045 | 0.0002 | 8.591 | 9.5337 |
0.0387 | 96.0 | 1056 | 0.0003 | 8.6577 | 9.5337 |
0.0387 | 97.0 | 1067 | 0.0001 | 8.6577 | 9.5337 |
0.0387 | 98.0 | 1078 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 99.0 | 1089 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 100.0 | 1100 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 101.0 | 1111 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 102.0 | 1122 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 103.0 | 1133 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 104.0 | 1144 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 105.0 | 1155 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 106.0 | 1166 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 107.0 | 1177 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 108.0 | 1188 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 109.0 | 1199 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 110.0 | 1210 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 111.0 | 1221 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 112.0 | 1232 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 113.0 | 1243 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 114.0 | 1254 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 115.0 | 1265 | 0.0002 | 8.6036 | 9.5337 |
0.0387 | 116.0 | 1276 | 0.0001 | 8.6577 | 9.5337 |
0.0387 | 117.0 | 1287 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 118.0 | 1298 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 119.0 | 1309 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 120.0 | 1320 | 0.0012 | 8.5758 | 9.5337 |
0.0387 | 121.0 | 1331 | 0.0010 | 8.5758 | 9.5337 |
0.0387 | 122.0 | 1342 | 0.0003 | 8.6577 | 9.5337 |
0.0387 | 123.0 | 1353 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 124.0 | 1364 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 125.0 | 1375 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 126.0 | 1386 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 127.0 | 1397 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 128.0 | 1408 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 129.0 | 1419 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 130.0 | 1430 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 131.0 | 1441 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 132.0 | 1452 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 133.0 | 1463 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 134.0 | 1474 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 135.0 | 1485 | 0.0000 | 8.6577 | 9.5337 |
0.0387 | 136.0 | 1496 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 137.0 | 1507 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 138.0 | 1518 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 139.0 | 1529 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 140.0 | 1540 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 141.0 | 1551 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 142.0 | 1562 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 143.0 | 1573 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 144.0 | 1584 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 145.0 | 1595 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 146.0 | 1606 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 147.0 | 1617 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 148.0 | 1628 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 149.0 | 1639 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 150.0 | 1650 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 151.0 | 1661 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 152.0 | 1672 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 153.0 | 1683 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 154.0 | 1694 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 155.0 | 1705 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 156.0 | 1716 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 157.0 | 1727 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 158.0 | 1738 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 159.0 | 1749 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 160.0 | 1760 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 161.0 | 1771 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 162.0 | 1782 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 163.0 | 1793 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 164.0 | 1804 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 165.0 | 1815 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 166.0 | 1826 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 167.0 | 1837 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 168.0 | 1848 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 169.0 | 1859 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 170.0 | 1870 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 171.0 | 1881 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 172.0 | 1892 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 173.0 | 1903 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 174.0 | 1914 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 175.0 | 1925 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 176.0 | 1936 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 177.0 | 1947 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 178.0 | 1958 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 179.0 | 1969 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 180.0 | 1980 | 0.0000 | 8.6577 | 9.5337 |
0.0123 | 181.0 | 1991 | 0.0000 | 8.6577 | 9.5337 |
0.0053 | 182.0 | 2002 | 0.0000 | 8.6577 | 9.5337 |
0.0053 | 183.0 | 2013 | 0.0000 | 8.6577 | 9.5337 |
0.0053 | 184.0 | 2024 | 0.0000 | 8.6577 | 9.5337 |
0.0053 | 185.0 | 2035 | 0.0000 | 8.6577 | 9.5337 |
0.0053 | 186.0 | 2046 | 0.0000 | 8.6577 | 9.5337 |
0.0053 | 187.0 | 2057 | 0.0000 | 8.6577 | 9.5337 |
0.0053 | 188.0 | 2068 | 0.0000 | 8.6577 | 9.5337 |
0.0053 | 189.0 | 2079 | 0.0000 | 8.6577 | 9.5337 |
0.0053 | 190.0 | 2090 | 0.0000 | 8.6577 | 9.5337 |
0.0053 | 191.0 | 2101 | 0.0000 | 8.6577 | 9.5337 |
0.0053 | 192.0 | 2112 | 0.0000 | 8.6577 | 9.5337 |
0.0053 | 193.0 | 2123 | 0.0000 | 8.6577 | 9.5337 |
0.0053 | 194.0 | 2134 | 0.0000 | 8.6577 | 9.5337 |
0.0053 | 195.0 | 2145 | 0.0000 | 8.6577 | 9.5337 |
0.0053 | 196.0 | 2156 | 0.0000 | 8.6577 | 9.5337 |
0.0053 | 197.0 | 2167 | 0.0000 | 8.6577 | 9.5337 |
0.0053 | 198.0 | 2178 | 0.0000 | 8.6577 | 9.5337 |
0.0053 | 199.0 | 2189 | 0.0000 | 8.6577 | 9.5337 |
0.0053 | 200.0 | 2200 | 0.0000 | 8.6577 | 9.5337 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for youdiniplays/bic-tl-model
Base model
google-t5/t5-small