tl-bic-model

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0048
  • Bleu: 9.1518
  • Gen Len: 9.681

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
No log 1.0 11 2.9595 0.2068 9.7301
No log 2.0 22 2.5919 0.4412 10.0736
No log 3.0 33 2.2077 0.9166 9.6626
No log 4.0 44 1.9446 0.7991 9.8037
No log 5.0 55 1.6666 0.8674 9.8221
No log 6.0 66 1.4209 1.0262 10.0613
No log 7.0 77 1.1828 1.573 9.9693
No log 8.0 88 0.9715 1.6163 9.9509
No log 9.0 99 0.8203 2.1844 9.7362
No log 10.0 110 0.6698 2.193 9.6687
No log 11.0 121 0.5533 3.1733 9.816
No log 12.0 132 0.4650 3.0054 9.6687
No log 13.0 143 0.3783 3.5488 9.6012
No log 14.0 154 0.3130 4.1709 9.7362
No log 15.0 165 0.2620 4.9365 9.6442
No log 16.0 176 0.2351 5.5276 9.546
No log 17.0 187 0.1953 5.6558 9.6074
No log 18.0 198 0.1524 6.4656 9.6503
No log 19.0 209 0.1226 6.9583 9.5828
No log 20.0 220 0.0953 7.7977 9.5951
No log 21.0 231 0.0766 7.7172 9.638
No log 22.0 242 0.0633 8.2632 9.6135
No log 23.0 253 0.0581 8.3314 9.6135
No log 24.0 264 0.0478 8.6339 9.6564
No log 25.0 275 0.0379 8.4599 9.681
No log 26.0 286 0.0349 8.8518 9.681
No log 27.0 297 0.0284 8.6561 9.6994
No log 28.0 308 0.0215 8.8647 9.6748
No log 29.0 319 0.0189 8.8318 9.681
No log 30.0 330 0.0211 8.7839 9.681
No log 31.0 341 0.0223 9.0581 9.6687
No log 32.0 352 0.0172 9.0431 9.6687
No log 33.0 363 0.0131 9.0838 9.681
No log 34.0 374 0.0152 8.9549 9.681
No log 35.0 385 0.0121 9.0402 9.681
No log 36.0 396 0.0178 9.1416 9.6442
No log 37.0 407 0.0161 9.0402 9.6564
No log 38.0 418 0.0139 9.1518 9.681
No log 39.0 429 0.0162 9.0741 9.681
No log 40.0 440 0.0126 9.1518 9.681
No log 41.0 451 0.0108 9.0897 9.681
No log 42.0 462 0.0144 9.0836 9.6933
No log 43.0 473 0.0238 9.1129 9.6871
No log 44.0 484 0.0075 9.1518 9.681
No log 45.0 495 0.0108 8.9628 9.681
0.7724 46.0 506 0.0071 8.9863 9.681
0.7724 47.0 517 0.0087 9.1518 9.681
0.7724 48.0 528 0.0082 9.1518 9.681
0.7724 49.0 539 0.0064 9.1518 9.681
0.7724 50.0 550 0.0095 9.1518 9.681
0.7724 51.0 561 0.0090 9.1518 9.681
0.7724 52.0 572 0.0091 9.1801 9.681
0.7724 53.0 583 0.0105 9.1801 9.681
0.7724 54.0 594 0.0180 8.9309 9.681
0.7724 55.0 605 0.0123 9.1518 9.681
0.7724 56.0 616 0.0119 9.1518 9.681
0.7724 57.0 627 0.0061 9.1518 9.681
0.7724 58.0 638 0.0082 9.1518 9.681
0.7724 59.0 649 0.0059 9.1518 9.681
0.7724 60.0 660 0.0146 9.0639 9.681
0.7724 61.0 671 0.0123 9.0639 9.681
0.7724 62.0 682 0.0084 9.0639 9.681
0.7724 63.0 693 0.0122 9.0639 9.681
0.7724 64.0 704 0.0319 9.1518 9.681
0.7724 65.0 715 0.0142 9.1518 9.681
0.7724 66.0 726 0.0086 9.1518 9.681
0.7724 67.0 737 0.0078 9.0847 9.681
0.7724 68.0 748 0.0122 9.1518 9.681
0.7724 69.0 759 0.0092 9.1518 9.681
0.7724 70.0 770 0.0059 9.1518 9.681
0.7724 71.0 781 0.0090 9.0944 9.6871
0.7724 72.0 792 0.0127 9.0944 9.6871
0.7724 73.0 803 0.0108 9.0944 9.6871
0.7724 74.0 814 0.0091 9.1518 9.681
0.7724 75.0 825 0.0073 9.1518 9.681
0.7724 76.0 836 0.0112 9.1518 9.681
0.7724 77.0 847 0.0113 9.1518 9.681
0.7724 78.0 858 0.0093 9.1518 9.681
0.7724 79.0 869 0.0048 9.1518 9.681
0.7724 80.0 880 0.0064 9.1518 9.681
0.7724 81.0 891 0.0102 9.1518 9.681
0.7724 82.0 902 0.0110 9.1467 9.6748
0.7724 83.0 913 0.0104 9.1467 9.6748
0.7724 84.0 924 0.0089 9.1467 9.6748
0.7724 85.0 935 0.0078 9.1518 9.681
0.7724 86.0 946 0.0067 9.1518 9.681
0.7724 87.0 957 0.0047 9.1518 9.681
0.7724 88.0 968 0.0047 9.1518 9.681
0.7724 89.0 979 0.0058 9.1518 9.681
0.7724 90.0 990 0.0045 9.1518 9.681
0.0426 91.0 1001 0.0087 9.1518 9.681
0.0426 92.0 1012 0.0096 9.1518 9.681
0.0426 93.0 1023 0.0063 9.1518 9.681
0.0426 94.0 1034 0.0076 9.1518 9.681
0.0426 95.0 1045 0.0055 9.1518 9.681
0.0426 96.0 1056 0.0054 9.1518 9.681
0.0426 97.0 1067 0.0052 9.1518 9.681
0.0426 98.0 1078 0.0046 9.1518 9.681
0.0426 99.0 1089 0.0100 9.1518 9.681
0.0426 100.0 1100 0.0104 9.1518 9.681
0.0426 101.0 1111 0.0180 9.1518 9.681
0.0426 102.0 1122 0.0208 9.1518 9.681
0.0426 103.0 1133 0.0159 9.1518 9.681
0.0426 104.0 1144 0.0139 9.1518 9.681
0.0426 105.0 1155 0.0122 9.1518 9.681
0.0426 106.0 1166 0.0080 9.1518 9.681
0.0426 107.0 1177 0.0063 9.1518 9.681
0.0426 108.0 1188 0.0149 9.1467 9.6687
0.0426 109.0 1199 0.0147 9.1518 9.681
0.0426 110.0 1210 0.0113 9.1518 9.681
0.0426 111.0 1221 0.0170 9.1518 9.681
0.0426 112.0 1232 0.0138 9.1518 9.681
0.0426 113.0 1243 0.0129 9.1518 9.681
0.0426 114.0 1254 0.0095 9.1518 9.681
0.0426 115.0 1265 0.0133 9.1518 9.681
0.0426 116.0 1276 0.0128 9.1518 9.681
0.0426 117.0 1287 0.0112 9.1518 9.681
0.0426 118.0 1298 0.0093 9.1518 9.681
0.0426 119.0 1309 0.0066 9.1518 9.681
0.0426 120.0 1320 0.0048 9.1518 9.681
0.0426 121.0 1331 0.0079 9.1518 9.681
0.0426 122.0 1342 0.0095 9.1518 9.681
0.0426 123.0 1353 0.0069 9.1518 9.681
0.0426 124.0 1364 0.0056 9.1518 9.681
0.0426 125.0 1375 0.0049 9.1518 9.681
0.0426 126.0 1386 0.0066 9.1518 9.681
0.0426 127.0 1397 0.0080 9.1518 9.681
0.0426 128.0 1408 0.0073 9.1467 9.6687
0.0426 129.0 1419 0.0063 9.1518 9.681
0.0426 130.0 1430 0.0063 9.1518 9.681
0.0426 131.0 1441 0.0051 9.1518 9.681
0.0426 132.0 1452 0.0045 9.1518 9.681
0.0426 133.0 1463 0.0061 9.1518 9.681
0.0426 134.0 1474 0.0061 9.1518 9.681
0.0426 135.0 1485 0.0042 9.1518 9.681
0.0426 136.0 1496 0.0043 9.1518 9.681
0.0153 137.0 1507 0.0045 9.1518 9.681
0.0153 138.0 1518 0.0056 9.1518 9.681
0.0153 139.0 1529 0.0113 9.1518 9.681
0.0153 140.0 1540 0.0054 9.1518 9.681
0.0153 141.0 1551 0.0054 9.1518 9.681
0.0153 142.0 1562 0.0058 9.1518 9.681
0.0153 143.0 1573 0.0048 9.1518 9.681
0.0153 144.0 1584 0.0049 9.1518 9.681
0.0153 145.0 1595 0.0047 9.1518 9.681
0.0153 146.0 1606 0.0046 9.1518 9.681
0.0153 147.0 1617 0.0046 9.1518 9.681
0.0153 148.0 1628 0.0046 9.1518 9.681
0.0153 149.0 1639 0.0045 9.1518 9.681
0.0153 150.0 1650 0.0048 9.1518 9.681
0.0153 151.0 1661 0.0054 9.1518 9.681
0.0153 152.0 1672 0.0058 9.1518 9.681
0.0153 153.0 1683 0.0057 9.1518 9.681
0.0153 154.0 1694 0.0056 9.1518 9.681
0.0153 155.0 1705 0.0056 9.1518 9.681
0.0153 156.0 1716 0.0061 9.1518 9.681
0.0153 157.0 1727 0.0062 9.1518 9.681
0.0153 158.0 1738 0.0060 9.1518 9.681
0.0153 159.0 1749 0.0060 9.1518 9.681
0.0153 160.0 1760 0.0061 9.1518 9.681
0.0153 161.0 1771 0.0052 9.1518 9.681
0.0153 162.0 1782 0.0049 9.1518 9.681
0.0153 163.0 1793 0.0047 9.1518 9.681
0.0153 164.0 1804 0.0046 9.1518 9.681
0.0153 165.0 1815 0.0045 9.1518 9.681
0.0153 166.0 1826 0.0046 9.1518 9.681
0.0153 167.0 1837 0.0048 9.1518 9.681
0.0153 168.0 1848 0.0052 9.1518 9.681
0.0153 169.0 1859 0.0051 9.1518 9.681
0.0153 170.0 1870 0.0055 9.1518 9.681
0.0153 171.0 1881 0.0056 9.1518 9.681
0.0153 172.0 1892 0.0051 9.1518 9.681
0.0153 173.0 1903 0.0050 9.1518 9.681
0.0153 174.0 1914 0.0048 9.1518 9.681
0.0153 175.0 1925 0.0048 9.1518 9.681
0.0153 176.0 1936 0.0045 9.1518 9.681
0.0153 177.0 1947 0.0045 9.1518 9.681
0.0153 178.0 1958 0.0045 9.1518 9.681
0.0153 179.0 1969 0.0044 9.1518 9.681
0.0153 180.0 1980 0.0046 9.1518 9.681
0.0153 181.0 1991 0.0046 9.1518 9.681
0.007 182.0 2002 0.0046 9.1518 9.681
0.007 183.0 2013 0.0046 9.1518 9.681
0.007 184.0 2024 0.0046 9.1518 9.681
0.007 185.0 2035 0.0046 9.1518 9.681
0.007 186.0 2046 0.0046 9.1518 9.681
0.007 187.0 2057 0.0046 9.1518 9.681
0.007 188.0 2068 0.0047 9.1518 9.681
0.007 189.0 2079 0.0047 9.1518 9.681
0.007 190.0 2090 0.0048 9.1518 9.681
0.007 191.0 2101 0.0048 9.1518 9.681
0.007 192.0 2112 0.0049 9.1518 9.681
0.007 193.0 2123 0.0049 9.1518 9.681
0.007 194.0 2134 0.0048 9.1518 9.681
0.007 195.0 2145 0.0048 9.1518 9.681
0.007 196.0 2156 0.0048 9.1518 9.681
0.007 197.0 2167 0.0048 9.1518 9.681
0.007 198.0 2178 0.0048 9.1518 9.681
0.007 199.0 2189 0.0049 9.1518 9.681
0.007 200.0 2200 0.0048 9.1518 9.681

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
11
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for youdiniplays/tl-bic-model

Base model

google-t5/t5-small
Finetuned
(1637)
this model