tl-war-model

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0084
  • Bleu: 94.7937
  • Gen Len: 5.5401

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
No log 1.0 54 2.8430 1.2305 5.6469
No log 2.0 108 2.4489 2.2133 5.9431
No log 3.0 162 1.9890 2.4041 6.4425
No log 4.0 216 1.6632 5.3183 6.2288
No log 5.0 270 1.2998 11.2337 5.8688
No log 6.0 324 0.9992 22.9227 5.9826
No log 7.0 378 0.7938 40.8707 6.0523
No log 8.0 432 0.6332 41.6658 5.8455
No log 9.0 486 0.4849 57.7063 5.741
2.0554 10.0 540 0.3398 66.5916 5.7073
2.0554 11.0 594 0.2589 75.1398 5.5552
2.0554 12.0 648 0.1862 80.095 5.4901
2.0554 13.0 702 0.1188 82.7321 5.5656
2.0554 14.0 756 0.0992 84.2356 5.511
2.0554 15.0 810 0.0643 91.2032 5.5215
2.0554 16.0 864 0.0608 90.156 5.5621
2.0554 17.0 918 0.0461 87.3511 5.5726
2.0554 18.0 972 0.0555 88.5079 5.5621
0.4753 19.0 1026 0.0354 91.2536 5.5145
0.4753 20.0 1080 0.0423 92.0329 5.5505
0.4753 21.0 1134 0.0367 89.7566 5.5401
0.4753 22.0 1188 0.0319 92.3251 5.5424
0.4753 23.0 1242 0.0383 83.639 5.5842
0.4753 24.0 1296 0.0351 89.9239 5.5331
0.4753 25.0 1350 0.0397 90.785 5.5319
0.4753 26.0 1404 0.0269 89.6977 5.5273
0.4753 27.0 1458 0.0371 94.2434 5.5424
0.1679 28.0 1512 0.0281 93.1799 5.5389
0.1679 29.0 1566 0.0265 92.9805 5.5459
0.1679 30.0 1620 0.0240 93.4285 5.5401
0.1679 31.0 1674 0.0187 93.4675 5.5552
0.1679 32.0 1728 0.0228 91.1032 5.5389
0.1679 33.0 1782 0.0196 93.164 5.5528
0.1679 34.0 1836 0.0244 92.8435 5.5157
0.1679 35.0 1890 0.0224 93.3636 5.5447
0.1679 36.0 1944 0.0248 93.0376 5.5343
0.1679 37.0 1998 0.0205 94.3196 5.5354
0.096 38.0 2052 0.0211 93.2583 5.5343
0.096 39.0 2106 0.0200 91.9568 5.5343
0.096 40.0 2160 0.0201 91.1973 5.5587
0.096 41.0 2214 0.0227 94.0951 5.5424
0.096 42.0 2268 0.0202 94.1776 5.5482
0.096 43.0 2322 0.0198 93.2822 5.5273
0.096 44.0 2376 0.0187 93.1389 5.5412
0.096 45.0 2430 0.0203 93.566 5.5285
0.096 46.0 2484 0.0272 94.3114 5.583
0.0649 47.0 2538 0.0177 91.3008 5.518
0.0649 48.0 2592 0.0189 91.7827 5.5285
0.0649 49.0 2646 0.0222 94.3196 5.5517
0.0649 50.0 2700 0.0145 94.1234 5.5273
0.0649 51.0 2754 0.0150 93.531 5.5494
0.0649 52.0 2808 0.0178 92.7418 5.5273
0.0649 53.0 2862 0.0186 94.4449 5.5308
0.0649 54.0 2916 0.0170 93.4147 5.5343
0.0649 55.0 2970 0.0147 93.0869 5.5203
0.054 56.0 3024 0.0142 94.5277 5.5494
0.054 57.0 3078 0.0116 94.773 5.5528
0.054 58.0 3132 0.0145 94.5484 5.5343
0.054 59.0 3186 0.0180 94.7317 5.5343
0.054 60.0 3240 0.0149 93.3068 5.5296
0.054 61.0 3294 0.0133 94.7317 5.5377
0.054 62.0 3348 0.0130 94.7524 5.5308
0.054 63.0 3402 0.0161 94.7524 5.5343
0.054 64.0 3456 0.0143 94.3074 5.518
0.0432 65.0 3510 0.0162 94.5484 5.5319
0.0432 66.0 3564 0.0121 94.773 5.5296
0.0432 67.0 3618 0.0128 94.773 5.5377
0.0432 68.0 3672 0.0111 94.773 5.5436
0.0432 69.0 3726 0.0225 93.3009 5.5528
0.0432 70.0 3780 0.0131 93.7534 5.5377
0.0432 71.0 3834 0.0126 94.3251 5.547
0.0432 72.0 3888 0.0113 94.5484 5.5226
0.0432 73.0 3942 0.0116 94.569 5.547
0.0432 74.0 3996 0.0122 94.773 5.5459
0.0318 75.0 4050 0.0108 94.773 5.547
0.0318 76.0 4104 0.0106 94.7937 5.5424
0.0318 77.0 4158 0.0143 94.6754 5.5261
0.0318 78.0 4212 0.0118 94.5484 5.5319
0.0318 79.0 4266 0.0124 94.7317 5.5366
0.0318 80.0 4320 0.0150 94.773 5.5436
0.0318 81.0 4374 0.0111 94.5095 5.5656
0.0318 82.0 4428 0.0179 94.5277 5.5482
0.0318 83.0 4482 0.0126 94.7524 5.5412
0.0285 84.0 4536 0.0122 94.5277 5.5366
0.0285 85.0 4590 0.0160 94.7524 5.5494
0.0285 86.0 4644 0.0127 93.455 5.5366
0.0285 87.0 4698 0.0100 94.7937 5.5377
0.0285 88.0 4752 0.0123 94.7524 5.5447
0.0285 89.0 4806 0.0108 94.773 5.5528
0.0285 90.0 4860 0.0111 94.773 5.5412
0.0285 91.0 4914 0.0102 94.7937 5.5354
0.0285 92.0 4968 0.0103 94.773 5.5494
0.0246 93.0 5022 0.0101 94.773 5.5296
0.0246 94.0 5076 0.0119 94.773 5.5331
0.0246 95.0 5130 0.0100 94.3503 5.5401
0.0246 96.0 5184 0.0110 94.773 5.5412
0.0246 97.0 5238 0.0097 94.7937 5.5192
0.0246 98.0 5292 0.0109 94.2228 5.5366
0.0246 99.0 5346 0.0106 94.7937 5.5447
0.0246 100.0 5400 0.0100 94.7937 5.5424
0.0246 101.0 5454 0.0097 94.7937 5.5447
0.0235 102.0 5508 0.0100 94.3327 5.5482
0.0235 103.0 5562 0.0103 94.773 5.5494
0.0235 104.0 5616 0.0094 94.3327 5.5587
0.0235 105.0 5670 0.0096 94.7937 5.547
0.0235 106.0 5724 0.0111 94.773 5.5494
0.0235 107.0 5778 0.0112 94.773 5.5447
0.0235 108.0 5832 0.0095 94.7937 5.5494
0.0235 109.0 5886 0.0100 94.7937 5.5308
0.0235 110.0 5940 0.0099 94.7937 5.5494
0.0235 111.0 5994 0.0120 94.7524 5.5377
0.0194 112.0 6048 0.0112 94.773 5.5563
0.0194 113.0 6102 0.0106 94.0307 5.5331
0.0194 114.0 6156 0.0093 94.7937 5.5424
0.0194 115.0 6210 0.0108 94.773 5.5377
0.0194 116.0 6264 0.0129 94.773 5.5273
0.0194 117.0 6318 0.0152 94.7524 5.5389
0.0194 118.0 6372 0.0120 94.7524 5.5482
0.0194 119.0 6426 0.0111 94.773 5.5459
0.0194 120.0 6480 0.0102 94.7937 5.5401
0.0188 121.0 6534 0.0096 94.7937 5.5285
0.0188 122.0 6588 0.0093 94.7937 5.5401
0.0188 123.0 6642 0.0096 94.7937 5.5447
0.0188 124.0 6696 0.0097 94.7937 5.5377
0.0188 125.0 6750 0.0094 94.7937 5.5354
0.0188 126.0 6804 0.0092 94.7937 5.554
0.0188 127.0 6858 0.0104 94.5183 5.5401
0.0188 128.0 6912 0.0107 93.7969 5.5261
0.0188 129.0 6966 0.0089 94.7937 5.5192
0.0165 130.0 7020 0.0093 94.7937 5.5308
0.0165 131.0 7074 0.0096 94.7937 5.5261
0.0165 132.0 7128 0.0091 94.7937 5.5447
0.0165 133.0 7182 0.0096 94.7937 5.5377
0.0165 134.0 7236 0.0091 94.7937 5.5377
0.0165 135.0 7290 0.0104 94.569 5.5354
0.0165 136.0 7344 0.0090 94.7937 5.5285
0.0165 137.0 7398 0.0092 94.7937 5.5261
0.0165 138.0 7452 0.0090 94.7937 5.5168
0.0151 139.0 7506 0.0093 94.7937 5.5215
0.0151 140.0 7560 0.0089 94.7937 5.5215
0.0151 141.0 7614 0.0092 94.7937 5.5401
0.0151 142.0 7668 0.0089 94.7937 5.5215
0.0151 143.0 7722 0.0091 94.7937 5.5377
0.0151 144.0 7776 0.0089 94.7937 5.5377
0.0151 145.0 7830 0.0097 94.7937 5.5308
0.0151 146.0 7884 0.0091 94.7937 5.5308
0.0151 147.0 7938 0.0087 94.7937 5.5331
0.0151 148.0 7992 0.0089 94.7937 5.5285
0.0132 149.0 8046 0.0088 94.7937 5.5401
0.0132 150.0 8100 0.0090 94.7937 5.5354
0.0132 151.0 8154 0.0086 94.7937 5.5331
0.0132 152.0 8208 0.0087 94.7937 5.5285
0.0132 153.0 8262 0.0089 94.7937 5.5285
0.0132 154.0 8316 0.0088 94.7937 5.5261
0.0132 155.0 8370 0.0089 94.7937 5.5401
0.0132 156.0 8424 0.0086 94.7937 5.5331
0.0132 157.0 8478 0.0088 94.7937 5.554
0.0121 158.0 8532 0.0088 94.7937 5.5401
0.0121 159.0 8586 0.0089 94.7937 5.5401
0.0121 160.0 8640 0.0092 94.7937 5.5261
0.0121 161.0 8694 0.0089 94.7937 5.5354
0.0121 162.0 8748 0.0089 94.7937 5.5238
0.0121 163.0 8802 0.0088 94.7937 5.5261
0.0121 164.0 8856 0.0087 94.7937 5.5331
0.0121 165.0 8910 0.0087 94.7937 5.5285
0.0121 166.0 8964 0.0090 94.7937 5.5261
0.0117 167.0 9018 0.0088 94.7937 5.5308
0.0117 168.0 9072 0.0085 94.7937 5.5377
0.0117 169.0 9126 0.0086 94.7937 5.5354
0.0117 170.0 9180 0.0086 94.7937 5.5192
0.0117 171.0 9234 0.0087 94.7937 5.5424
0.0117 172.0 9288 0.0090 94.4227 5.5354
0.0117 173.0 9342 0.0089 94.7937 5.5285
0.0117 174.0 9396 0.0087 94.7937 5.5261
0.0117 175.0 9450 0.0087 94.7937 5.5377
0.0107 176.0 9504 0.0087 94.7937 5.5261
0.0107 177.0 9558 0.0086 94.7937 5.5261
0.0107 178.0 9612 0.0088 94.7937 5.5377
0.0107 179.0 9666 0.0085 94.7937 5.5215
0.0107 180.0 9720 0.0085 94.7937 5.5377
0.0107 181.0 9774 0.0085 94.7937 5.5308
0.0107 182.0 9828 0.0085 94.7937 5.5285
0.0107 183.0 9882 0.0085 94.7937 5.5308
0.0107 184.0 9936 0.0085 94.7937 5.5261
0.0107 185.0 9990 0.0084 94.7937 5.5331
0.0106 186.0 10044 0.0084 94.7937 5.5354
0.0106 187.0 10098 0.0084 94.7937 5.5447
0.0106 188.0 10152 0.0085 94.7937 5.5354
0.0106 189.0 10206 0.0084 94.7937 5.5377
0.0106 190.0 10260 0.0084 94.7937 5.5354
0.0106 191.0 10314 0.0085 94.7937 5.5377
0.0106 192.0 10368 0.0084 94.7937 5.5377
0.0106 193.0 10422 0.0084 94.7937 5.5401
0.0106 194.0 10476 0.0085 94.7937 5.5401
0.0091 195.0 10530 0.0084 94.7937 5.5331
0.0091 196.0 10584 0.0084 94.7937 5.5401
0.0091 197.0 10638 0.0084 94.7937 5.5401
0.0091 198.0 10692 0.0084 94.7937 5.5401
0.0091 199.0 10746 0.0084 94.7937 5.5401
0.0091 200.0 10800 0.0084 94.7937 5.5401

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
11
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for youdiniplays/tl-war-model

Base model

google-t5/t5-small
Finetuned
(1637)
this model