BenchX Retrained Models
Collection
9 items
•
Updated
•
1
A retrained MGCA-ViT model for benchmarking medical vision-language pre-training methods within the BenchX framework.
Please follow the instruction to install BenchX.
To fine-tune MGCA-ViT for classification, run this command:
python bin/train.py config/classification/<dataset_name>/mgca_vit.yml
To fine-tune MGCA-ViT for segmentation, run this command:
python mmsegmentation/tools/train.py config/benchmark/<dataset_name>/mgca_vit.yml
To fine-tune MGCA-ViT for report generation, run this command:
python bin/train.py config/report_generation/<dataset_name>/mgca_vit.yml
To evaluate fine-tuned MGCA-ViT models, run:
# For classification and report generation
python bin/test.py config/<task_name>/<dataset_name>/mgca_vit.yml validator.splits=[test] ckpt_dir=<path_to_checkpoint>
# For segmentation
python mmsegmentation/tools/my_test.py mmsegmentation/config/<dataset_name>/mgca_vit.yml <path_to_checkpoint>
@article{wang2022multi,
title={Multi-granularity cross-modal alignment for generalized medical visual representation learning},
author={Wang, Fuying and Zhou, Yuyin and Wang, Shujun and Vardhanabhuti, Varut and Yu, Lequan},
journal={Advances in NeurIPS},
volume={35},
pages={33536--33549},
year={2022}
}
@inproceedings{zhou2024benchx,
title={BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays},
author={Yang Zhou, Tan Li Hui Faith, Yanyu Xu, Sicong Leng, Xinxing Xu, Yong Liu, Rick Siow Mong Goh},
booktitle={Proceedings of NeurIPS},
year={2024}
}