yq-fbdetr-v2
This model is a fine-tuned version of facebook/detr-resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2067
- Map: 0.9152
- Map 50: 0.9897
- Map 75: 0.979
- Map Small: -1.0
- Map Medium: 0.8667
- Map Large: 0.9242
- Mar 1: 0.1114
- Mar 10: 0.8451
- Mar 100: 0.939
- Mar Small: -1.0
- Mar Medium: 0.9
- Mar Large: 0.9472
- Map Per Class: -1.0
- Mar 100 Per Class: -1.0
- Classes: 0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.0400782557182323e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 29
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Per Class | Mar 100 Per Class | Classes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.5824 | 1.0 | 120 | 0.6091 | 0.6119 | 0.7625 | 0.7089 | -1.0 | 0.566 | 0.6253 | 0.0967 | 0.6459 | 0.6837 | -1.0 | 0.6418 | 0.6925 | -1.0 | -1.0 | 0 |
0.4222 | 2.0 | 240 | 0.4189 | 0.7908 | 0.9563 | 0.9095 | -1.0 | 0.7371 | 0.8036 | 0.1015 | 0.7565 | 0.8548 | -1.0 | 0.7971 | 0.8669 | -1.0 | -1.0 | 0 |
0.6961 | 3.0 | 360 | 0.3489 | 0.8233 | 0.9644 | 0.9283 | -1.0 | 0.7686 | 0.8346 | 0.1022 | 0.7833 | 0.873 | -1.0 | 0.8109 | 0.8861 | -1.0 | -1.0 | 0 |
0.4016 | 4.0 | 480 | 0.3397 | 0.8341 | 0.9692 | 0.9342 | -1.0 | 0.7777 | 0.849 | 0.1046 | 0.7867 | 0.8772 | -1.0 | 0.8195 | 0.8893 | -1.0 | -1.0 | 0 |
0.3081 | 5.0 | 600 | 0.3015 | 0.8575 | 0.9765 | 0.9647 | -1.0 | 0.8129 | 0.8663 | 0.1064 | 0.8016 | 0.8916 | -1.0 | 0.8501 | 0.9003 | -1.0 | -1.0 | 0 |
0.231 | 6.0 | 720 | 0.2907 | 0.8619 | 0.9754 | 0.9619 | -1.0 | 0.81 | 0.874 | 0.1056 | 0.8099 | 0.9013 | -1.0 | 0.8464 | 0.9128 | -1.0 | -1.0 | 0 |
0.3146 | 7.0 | 840 | 0.3052 | 0.8548 | 0.9728 | 0.9495 | -1.0 | 0.7966 | 0.8682 | 0.1058 | 0.8024 | 0.8929 | -1.0 | 0.8387 | 0.9042 | -1.0 | -1.0 | 0 |
0.2933 | 8.0 | 960 | 0.2768 | 0.8675 | 0.978 | 0.9667 | -1.0 | 0.8173 | 0.8796 | 0.1074 | 0.8122 | 0.9019 | -1.0 | 0.853 | 0.9121 | -1.0 | -1.0 | 0 |
0.2518 | 9.0 | 1080 | 0.2807 | 0.8683 | 0.9777 | 0.9668 | -1.0 | 0.8184 | 0.8785 | 0.1076 | 0.8092 | 0.9001 | -1.0 | 0.8562 | 0.9093 | -1.0 | -1.0 | 0 |
0.2744 | 10.0 | 1200 | 0.2709 | 0.8773 | 0.9785 | 0.9673 | -1.0 | 0.8314 | 0.8868 | 0.1087 | 0.817 | 0.9087 | -1.0 | 0.8653 | 0.9178 | -1.0 | -1.0 | 0 |
0.3472 | 11.0 | 1320 | 0.2631 | 0.8825 | 0.9791 | 0.9684 | -1.0 | 0.8378 | 0.8907 | 0.1087 | 0.822 | 0.9118 | -1.0 | 0.8682 | 0.9209 | -1.0 | -1.0 | 0 |
0.2634 | 12.0 | 1440 | 0.2761 | 0.8672 | 0.9878 | 0.9669 | -1.0 | 0.8144 | 0.8787 | 0.1064 | 0.81 | 0.901 | -1.0 | 0.8547 | 0.9107 | -1.0 | -1.0 | 0 |
0.2601 | 13.0 | 1560 | 0.2480 | 0.8857 | 0.9797 | 0.969 | -1.0 | 0.8409 | 0.8953 | 0.1092 | 0.8248 | 0.9158 | -1.0 | 0.8771 | 0.924 | -1.0 | -1.0 | 0 |
0.236 | 14.0 | 1680 | 0.2343 | 0.8971 | 0.9894 | 0.9791 | -1.0 | 0.8432 | 0.9101 | 0.1086 | 0.8341 | 0.9247 | -1.0 | 0.8736 | 0.9354 | -1.0 | -1.0 | 0 |
0.2099 | 15.0 | 1800 | 0.2367 | 0.8957 | 0.9892 | 0.9782 | -1.0 | 0.8439 | 0.9057 | 0.1103 | 0.8332 | 0.9232 | -1.0 | 0.8748 | 0.9334 | -1.0 | -1.0 | 0 |
0.2469 | 16.0 | 1920 | 0.2354 | 0.8975 | 0.9894 | 0.9785 | -1.0 | 0.8489 | 0.9084 | 0.1099 | 0.8324 | 0.9244 | -1.0 | 0.8782 | 0.9341 | -1.0 | -1.0 | 0 |
0.2666 | 17.0 | 2040 | 0.2367 | 0.893 | 0.9887 | 0.9776 | -1.0 | 0.8473 | 0.9022 | 0.1093 | 0.8306 | 0.9224 | -1.0 | 0.8788 | 0.9316 | -1.0 | -1.0 | 0 |
0.3254 | 18.0 | 2160 | 0.2290 | 0.902 | 0.9894 | 0.9786 | -1.0 | 0.8494 | 0.9134 | 0.1099 | 0.8349 | 0.9279 | -1.0 | 0.8811 | 0.9377 | -1.0 | -1.0 | 0 |
0.2248 | 19.0 | 2280 | 0.2206 | 0.9024 | 0.9894 | 0.9785 | -1.0 | 0.8565 | 0.9151 | 0.1107 | 0.837 | 0.9302 | -1.0 | 0.8871 | 0.9392 | -1.0 | -1.0 | 0 |
0.196 | 20.0 | 2400 | 0.2315 | 0.8986 | 0.9894 | 0.9785 | -1.0 | 0.8549 | 0.9092 | 0.1107 | 0.835 | 0.9271 | -1.0 | 0.8845 | 0.936 | -1.0 | -1.0 | 0 |
0.2661 | 21.0 | 2520 | 0.2173 | 0.9048 | 0.9897 | 0.9791 | -1.0 | 0.8557 | 0.917 | 0.1107 | 0.8381 | 0.9315 | -1.0 | 0.8885 | 0.9405 | -1.0 | -1.0 | 0 |
0.1741 | 22.0 | 2640 | 0.2182 | 0.9071 | 0.9897 | 0.9794 | -1.0 | 0.8538 | 0.9185 | 0.111 | 0.8399 | 0.9326 | -1.0 | 0.8871 | 0.9422 | -1.0 | -1.0 | 0 |
0.2364 | 23.0 | 2760 | 0.2172 | 0.9076 | 0.9896 | 0.979 | -1.0 | 0.854 | 0.9175 | 0.1108 | 0.8384 | 0.9318 | -1.0 | 0.8854 | 0.9415 | -1.0 | -1.0 | 0 |
0.2472 | 24.0 | 2880 | 0.2110 | 0.911 | 0.9896 | 0.9787 | -1.0 | 0.8603 | 0.92 | 0.1106 | 0.8426 | 0.9362 | -1.0 | 0.8937 | 0.9452 | -1.0 | -1.0 | 0 |
0.2159 | 25.0 | 3000 | 0.2130 | 0.9106 | 0.9896 | 0.9789 | -1.0 | 0.8646 | 0.9191 | 0.1109 | 0.8415 | 0.9355 | -1.0 | 0.8989 | 0.9432 | -1.0 | -1.0 | 0 |
0.2412 | 26.0 | 3120 | 0.2084 | 0.9142 | 0.9897 | 0.9788 | -1.0 | 0.864 | 0.922 | 0.1113 | 0.8443 | 0.9382 | -1.0 | 0.8954 | 0.9471 | -1.0 | -1.0 | 0 |
0.2208 | 27.0 | 3240 | 0.2101 | 0.9123 | 0.9897 | 0.9789 | -1.0 | 0.8645 | 0.9211 | 0.1112 | 0.8425 | 0.9373 | -1.0 | 0.8983 | 0.9455 | -1.0 | -1.0 | 0 |
0.1643 | 28.0 | 3360 | 0.2066 | 0.915 | 0.9895 | 0.9788 | -1.0 | 0.8668 | 0.9238 | 0.1115 | 0.8446 | 0.9389 | -1.0 | 0.9003 | 0.947 | -1.0 | -1.0 | 0 |
0.2868 | 29.0 | 3480 | 0.2067 | 0.9152 | 0.9897 | 0.979 | -1.0 | 0.8667 | 0.9242 | 0.1114 | 0.8451 | 0.939 | -1.0 | 0.9 | 0.9472 | -1.0 | -1.0 | 0 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 147
Model tree for youthquake-ai/yq-fbdetr-v2
Base model
facebook/detr-resnet-50