segformer-b5-finetuned-ce-head-batch1

This model is a fine-tuned version of nvidia/mit-b5 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0440
  • Mean Iou: 0.7859
  • Mean Accuracy: 0.8788
  • Overall Accuracy: 0.9823
  • Accuracy Bg: 0.9897
  • Accuracy Head: 0.7680
  • Iou Bg: 0.9819
  • Iou Head: 0.5899

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 80

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Bg Accuracy Head Iou Bg Iou Head
0.0884 2.9412 100 0.1053 0.6562 0.7059 0.9673 0.9907 0.4211 0.9667 0.3456
0.1706 5.8824 200 0.0874 0.6241 0.6473 0.9660 0.9976 0.2969 0.9655 0.2828
0.0701 8.8235 300 0.0642 0.7050 0.7350 0.9749 0.9963 0.4736 0.9744 0.4357
0.0395 11.7647 400 0.0686 0.7212 0.7506 0.9742 0.9964 0.5048 0.9736 0.4688
0.0363 14.7059 500 0.0587 0.7770 0.8551 0.9765 0.9884 0.7217 0.9758 0.5783
0.1636 17.6471 600 0.0474 0.8091 0.9205 0.9800 0.9853 0.8556 0.9792 0.6389
0.0794 20.5882 700 0.0484 0.8021 0.8651 0.9799 0.9914 0.7389 0.9792 0.6251
0.0242 23.5294 800 0.0398 0.8238 0.8610 0.9845 0.9959 0.7261 0.9840 0.6635
0.0545 26.4706 900 0.0363 0.8395 0.8948 0.9855 0.9937 0.7960 0.9850 0.6941
0.0135 29.4118 1000 0.0381 0.8070 0.8337 0.9837 0.9973 0.6701 0.9833 0.6308
0.0212 32.3529 1100 0.0348 0.8396 0.8882 0.9856 0.9945 0.7819 0.9852 0.6939
0.0131 35.2941 1200 0.0405 0.8257 0.8536 0.9848 0.9971 0.7100 0.9844 0.6671
0.0212 38.2353 1300 0.0397 0.8341 0.9150 0.9841 0.9903 0.8398 0.9835 0.6848
0.0403 41.1765 1400 0.0335 0.8373 0.8855 0.9856 0.9946 0.7763 0.9851 0.6894
0.0611 44.1176 1500 0.0383 0.8352 0.8728 0.9847 0.9957 0.7498 0.9842 0.6863
0.0338 47.0588 1600 0.0305 0.8581 0.9177 0.9871 0.9933 0.8420 0.9866 0.7296
0.0286 50.0 1700 0.0462 0.8070 0.8293 0.9825 0.9978 0.6608 0.9819 0.6321
0.0459 52.9412 1800 0.0302 0.8634 0.9143 0.9878 0.9945 0.8341 0.9874 0.7393
0.0473 55.8824 1900 0.0389 0.8210 0.8524 0.9846 0.9967 0.7082 0.9842 0.6578
0.0059 58.8235 2000 0.0331 0.8454 0.8753 0.9868 0.9970 0.7536 0.9864 0.7044
0.0432 61.7647 2100 0.0412 0.8239 0.8554 0.9848 0.9967 0.7141 0.9843 0.6636
0.0153 64.7059 2200 0.0322 0.8465 0.8869 0.9866 0.9956 0.7781 0.9862 0.7068
0.0181 67.6471 2300 0.0335 0.8341 0.8716 0.9856 0.9959 0.7473 0.9852 0.6830
0.039 70.5882 2400 0.0347 0.8340 0.8794 0.9853 0.9949 0.7638 0.9848 0.6831
0.0212 73.5294 2500 0.0425 0.8014 0.8340 0.9816 0.9962 0.6718 0.9811 0.6218
0.0113 76.4706 2600 0.0318 0.8412 0.8837 0.9861 0.9953 0.7720 0.9856 0.6968
0.0642 79.4118 2700 0.0415 0.8153 0.8450 0.9831 0.9967 0.6932 0.9825 0.6481

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
5
Safetensors
Model size
84.6M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ypark-bioinfo/segformer-b5-finetuned-ce-head-batch1

Base model

nvidia/mit-b5
Finetuned
(47)
this model