segformer-b5-finetuned-ce-head-batch2

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0575
  • Mean Iou: 0.7701
  • Mean Accuracy: 0.8473
  • Overall Accuracy: 0.9774
  • Accuracy Bg: 0.9891
  • Accuracy Head: 0.7054
  • Iou Bg: 0.9768
  • Iou Head: 0.5634

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Bg Accuracy Head Iou Bg Iou Head
0.0192 2.9412 100 0.0164 0.8513 0.9095 0.9934 0.9968 0.8221 0.9933 0.7094
0.0071 5.8824 200 0.0197 0.8495 0.8819 0.9933 0.9982 0.7656 0.9932 0.7058
0.0345 8.8235 300 0.0154 0.8745 0.9312 0.9940 0.9968 0.8657 0.9939 0.7551
0.0056 11.7647 400 0.0158 0.8668 0.9375 0.9937 0.9961 0.8789 0.9936 0.7401
0.0217 14.7059 500 0.0149 0.8736 0.9306 0.9936 0.9966 0.8646 0.9934 0.7538
0.0924 17.6471 600 0.0133 0.8738 0.9438 0.9943 0.9963 0.8913 0.9942 0.7534

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
5
Safetensors
Model size
84.6M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .