|
--- |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: Hello! |
|
example_title: Hello world |
|
group: Python |
|
--- |
|
|
|
This model is for debugging. It is randomly initialized with the config from [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) but is of smaller size. |
|
|
|
Codes: |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import transformers |
|
import torch |
|
import os |
|
from huggingface_hub import create_repo, upload_folder |
|
import accelerate |
|
|
|
model_id = 'Qwen/QwQ-32B-Preview' |
|
save_path = '/tmp/yujiepan/QwQ-preview-tiny-random' |
|
repo_id = 'yujiepan/QwQ-preview-tiny-random' |
|
|
|
os.system(f'rm -rf {save_path}') |
|
|
|
config = transformers.AutoConfig.from_pretrained( |
|
model_id, |
|
trust_remote_code=True, |
|
) |
|
config._name_or_path = model_id |
|
config.hidden_size = 8 |
|
config.intermediate_size = 16 |
|
config.num_key_value_heads = 1 |
|
config.num_attention_heads = 2 |
|
config.num_hidden_layers = 2 |
|
config.max_window_layers = 1 |
|
|
|
model = transformers.AutoModelForCausalLM.from_config( |
|
config, |
|
trust_remote_code=True, |
|
) |
|
model.generation_config = transformers.GenerationConfig.from_pretrained( |
|
model_id) |
|
model = model.to(torch.bfloat16) |
|
|
|
transformers.set_seed(42) |
|
num_params = 0 |
|
with torch.no_grad(): |
|
for name, p in sorted(model.named_parameters()): |
|
print(name, p.shape) |
|
torch.nn.init.uniform_(p, -0.5, 0.5) |
|
num_params += p.numel() |
|
print("Total number of parameters:", num_params) |
|
model.save_pretrained(save_path) |
|
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained( |
|
model_id, |
|
trust_remote_code=True, |
|
) |
|
tokenizer.save_pretrained(save_path) |
|
|
|
os.system(f'ls -alh {save_path}') |
|
create_repo(repo_id, exist_ok=True) |
|
upload_folder(repo_id=repo_id, folder_path=save_path) |
|
|
|
|
|
def try_example(model, tokenizer): |
|
prompt = "How many r in strawberry." |
|
messages = [ |
|
{"role": "system", "content": "You are a helpful and harmless assistant. You should think step-by-step."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=32 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
print(response) |
|
|
|
try_example(model, tokenizer) |
|
``` |
|
|