tags: | |
- generated_from_trainer | |
datasets: | |
- imdb | |
metrics: | |
- accuracy | |
base_model: textattack/bert-base-uncased-imdb | |
model-index: | |
- name: baseline | |
results: | |
- task: | |
type: text-classification | |
name: Text Classification | |
dataset: | |
name: imdb | |
type: imdb | |
config: plain_text | |
split: test | |
args: plain_text | |
metrics: | |
- type: accuracy | |
value: 0.92088 | |
name: Accuracy | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# baseline | |
This model is a fine-tuned version of [textattack/bert-base-uncased-imdb](https://huggingface.co/textattack/bert-base-uncased-imdb) on the imdb dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 0.5238 | |
- Accuracy: 0.9209 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 5e-05 | |
- train_batch_size: 32 | |
- eval_batch_size: 32 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 3.0 | |
- mixed_precision_training: Native AMP | |
### Training script | |
```bash | |
python run_glue.py \ | |
--model_name_or_path textattack/bert-base-uncased-imdb \ | |
--dataset_name imdb \ | |
--do_train \ | |
--do_eval \ | |
--max_seq_length 384 \ | |
--pad_to_max_length False \ | |
--per_device_train_batch_size 32 \ | |
--per_device_eval_batch_size 32 \ | |
--fp16 \ | |
--learning_rate 5e-5 \ | |
--optim adamw_torch \ | |
--num_train_epochs 3 \ | |
--overwrite_output_dir \ | |
--output_dir /tmp/bert-base-uncased-imdb | |
``` | |
Note: `run_glue.py` is modified to set the "test" split as evaluation dataset. | |
### Framework versions | |
- Transformers 4.27.4 | |
- Pytorch 1.13.1 | |
- Datasets 2.11.0 | |
- Tokenizers 0.13.3 | |