This model is randomly initialized, using the config from [https://huggingface.co/google/gemma-7b-it] but with smaller size. Note the model is in float16.

Codes:

from transformers import pipeline
from huggingface_hub import create_repo, upload_folder
import torch
import transformers
import os

model_id = 'google/gemma-7b-it'
save_path = '/tmp/yujiepan/gemma-tiny-random'
repo_id = 'yujiepan/gemma-tiny-random'

config = transformers.AutoConfig.from_pretrained(model_id)
config.hidden_size = 8
config.head_dim = 2
config.intermediate_size = 16
config.num_attention_heads = 4
config.num_hidden_layers = 2
config.num_key_value_heads = 2
print(config)

tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
tokenizer.save_pretrained(save_path)

model = transformers.AutoModelForCausalLM.from_config(config, torch_dtype=torch.float16)
model = model.half()

pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, do_sample=False, device='cuda')
print(pipe('Hello World!'))

model.save_pretrained(save_path)

# ovmodel = OVModelForCausalLM.from_pretrained(save_path, export=True)
# ovmodel = ovmodel.half()
# ovmodel.save_pretrained(save_path)

os.system(f'ls -alh {save_path}')
create_repo(repo_id, exist_ok=True)
upload_folder(repo_id=repo_id, folder_path=save_path)
Downloads last month
15
Safetensors
Model size
2.05M params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including yujiepan/gemma-tiny-random