|
--- |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: Hello! |
|
example_title: Hello world |
|
group: Python |
|
--- |
|
|
|
This model is for debugging. It is randomly initialized using the config from [meta-llama/Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct) but with smaller size. |
|
|
|
"yujiepan/llama-3.1-tiny-random" and "yujiepan/meta-llama-3.1-tiny-random" share exactly the same files except the repo name. |
|
|
|
Codes: |
|
```python |
|
import os |
|
|
|
import torch |
|
import transformers |
|
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline, set_seed |
|
|
|
model_id = "meta-llama/Meta-Llama-3.1-70B-Instruct" |
|
repo_id = "yujiepan/meta-llama-3.1-tiny-random" |
|
save_path = f"/tmp/{repo_id}" |
|
|
|
config = AutoConfig.from_pretrained(model_id, trust_remote_code=True) |
|
config._name_or_path = model_id |
|
config.hidden_size = 8 |
|
config.intermediate_size = 16 |
|
config.num_attention_heads = 2 |
|
config.num_key_value_heads = 1 |
|
config.num_hidden_layers = 2 |
|
config.torch_dtype = "bfloat16" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) |
|
tokenizer.save_pretrained(save_path) |
|
|
|
model = AutoModelForCausalLM.from_config( |
|
config, torch_dtype=torch.bfloat16, attn_implementation="sdpa", trust_remote_code=True |
|
) |
|
model.generation_config = GenerationConfig.from_pretrained(model_id, trust_remote_code=True) |
|
|
|
set_seed(42) |
|
with torch.no_grad(): |
|
for _, p in sorted(model.named_parameters()): |
|
torch.nn.init.uniform_(p, -0.2, 0.2) |
|
|
|
model.save_pretrained(save_path) |
|
|
|
pipe = pipeline("text-generation", model=save_path, device="cuda", trust_remote_code=True, max_new_tokens=20) |
|
print(pipe("Hello World!")) |
|
``` |
|
|