Tiny dummy models
Collection
Randomly initialized tiny models for debugging/testing purpose
•
65 items
•
Updated
•
4
This model is for debugging. It is randomly initialized using the config from Qwen/Qwen2-Audio-7B-Instruct but with smaller size.
Codes:
import os
from typing import Dict
import requests
import torch
import transformers
from PIL import Image
from torchvision import io
from transformers import (AutoConfig, AutoModelForCausalLM, AutoProcessor,
AutoTokenizer, GenerationConfig,
Qwen2AudioForConditionalGeneration, pipeline,
set_seed)
model_id = "Qwen/Qwen2-Audio-7B-Instruct"
repo_id = "yujiepan/qwen2-audio-tiny-random"
save_path = f"/tmp/{repo_id}"
config = AutoConfig.from_pretrained(model_id, trust_remote_code=True)
config.audio_config.encoder_layers = 2
config.audio_config.encoder_attention_heads = 2
config.audio_config.encoder_ffn_dim = 32
config.audio_config.d_model = 16
config.text_config.num_hidden_layers = 2
config.text_config.intermediate_size = 32
config.text_config.hidden_size = 16
config.text_config.num_attention_heads = 2
config.text_config.num_key_value_heads = 1
model = Qwen2AudioForConditionalGeneration(config=config)
model = model.to(torch.bfloat16).cuda().eval()
model.generation_config = GenerationConfig.from_pretrained(
model_id, trust_remote_code=True,
)
set_seed(42)
with torch.no_grad():
for _, p in sorted(model.named_parameters()):
torch.nn.init.uniform_(p, -0.3, 0.3)
processor = AutoProcessor.from_pretrained(model_id)
model.save_pretrained(save_path)
processor.save_pretrained(save_path)
os.system(f"ls -alh {save_path}")
def try_inference():
from io import BytesIO
from urllib.request import urlopen
import librosa
processor = AutoProcessor.from_pretrained(save_path)
model = Qwen2AudioForConditionalGeneration.from_pretrained(
save_path, device_map="auto")
conversation = [
{"role": "user", "content": [
{"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/guess_age_gender.wav"},
]},
{"role": "assistant", "content": "Yes, the speaker is female and in her twenties."},
{"role": "user", "content": [
{"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/translate_to_chinese.wav"},
]},
]
text = processor.apply_chat_template(
conversation, add_generation_prompt=True, tokenize=False)
audios = []
for message in conversation:
if isinstance(message["content"], list):
for ele in message["content"]:
if ele["type"] == "audio":
audios.append(librosa.load(
BytesIO(urlopen(ele['audio_url']).read()),
sr=processor.feature_extractor.sampling_rate)[0]
)
inputs = processor(text=text, audios=audios,
return_tensors="pt", padding=True)
inputs.input_ids = inputs.input_ids.to("cuda")
generate_ids = model.generate(**inputs, max_length=256)
generate_ids = generate_ids[:, inputs.input_ids.size(1):]
response = processor.batch_decode(
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
print(response)
try_inference()