File size: 2,149 Bytes
0ff26a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
library_name: transformers
pipeline_tag: automatic-speech-recognition
inference: true
---
This model is for debugging. It is randomly initialized with the config from [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) but is of smaller size.
Codes:
```python
import os
import torch
from huggingface_hub import create_repo, upload_folder
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
GenerationConfig,
AutoConfig,
pipeline,
set_seed,
)
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, AutoConfig
from datasets import load_dataset
model_id = "openai/whisper-large-v3"
repo_id = "yujiepan/whisper-v3-tiny-random"
save_path = f"/tmp/{repo_id}"
os.system(f'rm -rf {save_path}')
os.makedirs(save_path, exist_ok=True)
device = "cuda"
torch_dtype = torch.float16
model_id = "openai/whisper-large-v3"
config = AutoConfig.from_pretrained(model_id)
config.num_hidden_layers = 2
config.d_model = 8
config.decoder_attention_heads = 2
config.decoder_ffn_dim = 16
config.decoder_layers = 2
config.encoder_ffn_dim = 16
config.encoder_attention_heads = 2
config.encoder_layers = 2
model = AutoModelForSpeechSeq2Seq.from_config(config)
model.to(device).to(torch_dtype)
model.generation_config = GenerationConfig.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
set_seed(42)
num_params = 0
with torch.no_grad():
for name, p in sorted(model.named_parameters()):
print(name, p.shape)
torch.nn.init.uniform_(p, -0.5, 0.5)
num_params += p.numel()
print("Total number of parameters:", num_params)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=torch_dtype,
device=device,
)
sample = load_dataset(
"distil-whisper/librispeech_long", "clean",
split="validation",
)[0]["audio"]
result = pipe(sample, return_timestamps=True)
print(result["text"])
create_repo(repo_id, exist_ok=True)
upload_folder(repo_id=repo_id, folder_path=save_path, repo_type='model')
```
|