trocr-small-printedkorean-deleteunusedchar_noise

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3375
  • Cer: 0.2783
  • Wer: 0.2975
  • Accuracy: 45.6667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 128
  • eval_batch_size: 192
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer Wer Accuracy
1.711 0.43 1000 1.6485 0.3288 0.3944 30.6667
1.6849 0.85 2000 1.5361 0.3098 0.3809 32.3333
1.4933 1.28 3000 1.4302 0.2935 0.3533 34.6667
1.526 1.71 4000 1.4010 0.2922 0.3400 35.6667
1.3422 2.13 5000 1.3883 0.2846 0.3331 36.0
1.333 2.56 6000 1.3790 0.2871 0.3308 34.0
1.3295 2.99 7000 1.3644 0.2876 0.3294 35.6667
1.3294 3.42 8000 1.3588 0.2824 0.3202 36.6667
1.3578 3.84 9000 1.3502 0.2823 0.3162 40.6667
1.3029 4.27 10000 1.3514 0.2879 0.3228 37.0
1.2777 4.7 11000 1.3507 0.2813 0.3168 38.3333
1.1781 5.12 12000 1.3507 0.2791 0.3150 40.3333
1.3025 5.55 13000 1.3459 0.2818 0.3099 41.6667
1.2024 5.98 14000 1.3401 0.2801 0.3061 41.6667
1.1792 6.4 15000 1.3412 0.2763 0.3015 44.6667
1.1586 6.83 16000 1.3410 0.2799 0.3064 43.3333
1.2098 7.26 17000 1.3439 0.2777 0.3030 43.6667
1.2122 7.69 18000 1.3418 0.2816 0.3050 43.3333
1.1323 8.11 19000 1.3409 0.2767 0.2981 45.3333
1.2215 8.54 20000 1.3386 0.2781 0.3004 44.0
1.2068 8.97 21000 1.3375 0.2762 0.2972 45.0
1.0847 9.39 22000 1.3366 0.2765 0.2969 46.0
1.1791 9.82 23000 1.3375 0.2783 0.2975 45.6667

Framework versions

  • Transformers 4.28.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
10
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.