yumjunstar
commited on
Commit
·
521a66e
1
Parent(s):
2315de1
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- wer
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: trocr-small-printedkorean-deleteunusedchar_noise
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# trocr-small-printedkorean-deleteunusedchar_noise
|
16 |
+
|
17 |
+
This model was trained from scratch on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.3375
|
20 |
+
- Cer: 0.2783
|
21 |
+
- Wer: 0.2975
|
22 |
+
- Accuracy: 45.6667
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 4e-05
|
42 |
+
- train_batch_size: 128
|
43 |
+
- eval_batch_size: 192
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 10
|
48 |
+
- mixed_precision_training: Native AMP
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer | Accuracy |
|
53 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:--------:|
|
54 |
+
| 1.711 | 0.43 | 1000 | 1.6485 | 0.3288 | 0.3944 | 30.6667 |
|
55 |
+
| 1.6849 | 0.85 | 2000 | 1.5361 | 0.3098 | 0.3809 | 32.3333 |
|
56 |
+
| 1.4933 | 1.28 | 3000 | 1.4302 | 0.2935 | 0.3533 | 34.6667 |
|
57 |
+
| 1.526 | 1.71 | 4000 | 1.4010 | 0.2922 | 0.3400 | 35.6667 |
|
58 |
+
| 1.3422 | 2.13 | 5000 | 1.3883 | 0.2846 | 0.3331 | 36.0 |
|
59 |
+
| 1.333 | 2.56 | 6000 | 1.3790 | 0.2871 | 0.3308 | 34.0 |
|
60 |
+
| 1.3295 | 2.99 | 7000 | 1.3644 | 0.2876 | 0.3294 | 35.6667 |
|
61 |
+
| 1.3294 | 3.42 | 8000 | 1.3588 | 0.2824 | 0.3202 | 36.6667 |
|
62 |
+
| 1.3578 | 3.84 | 9000 | 1.3502 | 0.2823 | 0.3162 | 40.6667 |
|
63 |
+
| 1.3029 | 4.27 | 10000 | 1.3514 | 0.2879 | 0.3228 | 37.0 |
|
64 |
+
| 1.2777 | 4.7 | 11000 | 1.3507 | 0.2813 | 0.3168 | 38.3333 |
|
65 |
+
| 1.1781 | 5.12 | 12000 | 1.3507 | 0.2791 | 0.3150 | 40.3333 |
|
66 |
+
| 1.3025 | 5.55 | 13000 | 1.3459 | 0.2818 | 0.3099 | 41.6667 |
|
67 |
+
| 1.2024 | 5.98 | 14000 | 1.3401 | 0.2801 | 0.3061 | 41.6667 |
|
68 |
+
| 1.1792 | 6.4 | 15000 | 1.3412 | 0.2763 | 0.3015 | 44.6667 |
|
69 |
+
| 1.1586 | 6.83 | 16000 | 1.3410 | 0.2799 | 0.3064 | 43.3333 |
|
70 |
+
| 1.2098 | 7.26 | 17000 | 1.3439 | 0.2777 | 0.3030 | 43.6667 |
|
71 |
+
| 1.2122 | 7.69 | 18000 | 1.3418 | 0.2816 | 0.3050 | 43.3333 |
|
72 |
+
| 1.1323 | 8.11 | 19000 | 1.3409 | 0.2767 | 0.2981 | 45.3333 |
|
73 |
+
| 1.2215 | 8.54 | 20000 | 1.3386 | 0.2781 | 0.3004 | 44.0 |
|
74 |
+
| 1.2068 | 8.97 | 21000 | 1.3375 | 0.2762 | 0.2972 | 45.0 |
|
75 |
+
| 1.0847 | 9.39 | 22000 | 1.3366 | 0.2765 | 0.2969 | 46.0 |
|
76 |
+
| 1.1791 | 9.82 | 23000 | 1.3375 | 0.2783 | 0.2975 | 45.6667 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.28.0
|
82 |
+
- Pytorch 1.13.1+cu116
|
83 |
+
- Datasets 2.14.4
|
84 |
+
- Tokenizers 0.13.3
|