yumjunstar commited on
Commit
521a66e
·
1 Parent(s): 2315de1

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - wer
6
+ - accuracy
7
+ model-index:
8
+ - name: trocr-small-printedkorean-deleteunusedchar_noise
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # trocr-small-printedkorean-deleteunusedchar_noise
16
+
17
+ This model was trained from scratch on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.3375
20
+ - Cer: 0.2783
21
+ - Wer: 0.2975
22
+ - Accuracy: 45.6667
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 4e-05
42
+ - train_batch_size: 128
43
+ - eval_batch_size: 192
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 10
48
+ - mixed_precision_training: Native AMP
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Cer | Wer | Accuracy |
53
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:--------:|
54
+ | 1.711 | 0.43 | 1000 | 1.6485 | 0.3288 | 0.3944 | 30.6667 |
55
+ | 1.6849 | 0.85 | 2000 | 1.5361 | 0.3098 | 0.3809 | 32.3333 |
56
+ | 1.4933 | 1.28 | 3000 | 1.4302 | 0.2935 | 0.3533 | 34.6667 |
57
+ | 1.526 | 1.71 | 4000 | 1.4010 | 0.2922 | 0.3400 | 35.6667 |
58
+ | 1.3422 | 2.13 | 5000 | 1.3883 | 0.2846 | 0.3331 | 36.0 |
59
+ | 1.333 | 2.56 | 6000 | 1.3790 | 0.2871 | 0.3308 | 34.0 |
60
+ | 1.3295 | 2.99 | 7000 | 1.3644 | 0.2876 | 0.3294 | 35.6667 |
61
+ | 1.3294 | 3.42 | 8000 | 1.3588 | 0.2824 | 0.3202 | 36.6667 |
62
+ | 1.3578 | 3.84 | 9000 | 1.3502 | 0.2823 | 0.3162 | 40.6667 |
63
+ | 1.3029 | 4.27 | 10000 | 1.3514 | 0.2879 | 0.3228 | 37.0 |
64
+ | 1.2777 | 4.7 | 11000 | 1.3507 | 0.2813 | 0.3168 | 38.3333 |
65
+ | 1.1781 | 5.12 | 12000 | 1.3507 | 0.2791 | 0.3150 | 40.3333 |
66
+ | 1.3025 | 5.55 | 13000 | 1.3459 | 0.2818 | 0.3099 | 41.6667 |
67
+ | 1.2024 | 5.98 | 14000 | 1.3401 | 0.2801 | 0.3061 | 41.6667 |
68
+ | 1.1792 | 6.4 | 15000 | 1.3412 | 0.2763 | 0.3015 | 44.6667 |
69
+ | 1.1586 | 6.83 | 16000 | 1.3410 | 0.2799 | 0.3064 | 43.3333 |
70
+ | 1.2098 | 7.26 | 17000 | 1.3439 | 0.2777 | 0.3030 | 43.6667 |
71
+ | 1.2122 | 7.69 | 18000 | 1.3418 | 0.2816 | 0.3050 | 43.3333 |
72
+ | 1.1323 | 8.11 | 19000 | 1.3409 | 0.2767 | 0.2981 | 45.3333 |
73
+ | 1.2215 | 8.54 | 20000 | 1.3386 | 0.2781 | 0.3004 | 44.0 |
74
+ | 1.2068 | 8.97 | 21000 | 1.3375 | 0.2762 | 0.2972 | 45.0 |
75
+ | 1.0847 | 9.39 | 22000 | 1.3366 | 0.2765 | 0.2969 | 46.0 |
76
+ | 1.1791 | 9.82 | 23000 | 1.3375 | 0.2783 | 0.2975 | 45.6667 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.28.0
82
+ - Pytorch 1.13.1+cu116
83
+ - Datasets 2.14.4
84
+ - Tokenizers 0.13.3