distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5647
  • Accuracy: 0.87

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2278 1.0 57 2.1709 0.44
1.7173 2.0 114 1.6084 0.57
1.1979 3.0 171 1.1897 0.67
1.1177 4.0 228 1.0003 0.72
0.8526 5.0 285 0.8854 0.73
0.6463 6.0 342 0.7791 0.79
0.5461 7.0 399 0.7468 0.78
0.3953 8.0 456 0.7352 0.75
0.3054 9.0 513 0.6757 0.79
0.18 10.0 570 0.5711 0.76
0.1526 11.0 627 0.6026 0.85
0.0812 12.0 684 0.5876 0.82
0.0578 13.0 741 0.5815 0.85
0.0318 14.0 798 0.5828 0.85
0.0283 15.0 855 0.5960 0.85
0.0393 16.0 912 0.5674 0.85
0.018 17.0 969 0.5647 0.87

Framework versions

  • Transformers 4.31.0.dev0
  • Pytorch 1.13.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3
Downloads last month
27
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yuval6967/distilhubert-finetuned-gtzan

Finetunes
1 model

Dataset used to train yuval6967/distilhubert-finetuned-gtzan

Evaluation results