scan-8192-16M-test / README.md
zaydzuhri's picture
Training in progress, step 5000
a0806ea verified
|
raw
history blame
4.94 kB

🔥 Flame

A minimal framework for training FLA models, whether from scratch or through finetuning.

Built on the robust infrastructure of 🤗, flame enables you to train large language models with just a few lines of code: we use datasets for data processing, transformers for model definitions, and accelerate[^1] for seamless distributed training.

In this README, we will guide you through the process of using flame to train GLA models.

Setup

To get started, you'll need to install the required packages. Both fla and flame have minimal dependencies. Clone the fla repository and install the necessary packages as follows:

git clone https://github.com/sustcsonglin/flash-linear-attention.git
pip install . 
pip install accelerate wandb
pip3 install deepspeed

The 🤗 tokenizers have some memory leak issues when processing very long documents. To address this, please ensure you install tokenizers>=0.20.4.

Preprocessing

Before training, you need to download and pre-tokenize your dataset. We provide a straightforward script for this. For instance, to tokenize a 10B sample of the fineweb-edu dataset, run:

python preprocess.py \
  --dataset HuggingFaceFW/fineweb-edu \
  --name sample-10BT \
  --split train \
  --context_length 2048

or an even smaller example, just for testing:

python preprocess.py \
  --dataset alturing/gutenberg-texts \
  --split train \
  --context_length 2048

This will cache the processed dataset at data/HuggingFaceFW/fineweb-edu/sample-10BT/train.

GLA utilizes a subset of Slimpajama for pretraining in the paper. Given the size of the dataset, the fastest way to download it is using git lfs (refer to this issue).

git lfs install
git clone https://huggingface.co/datasets/cerebras/SlimPajama-627B
python preprocess.py \
  --dataset SlimPajama-627B \
  --split train \
  --context_length 2048

Training from scratch

To train your 340M model from scratch, execute the following command:

bash train.sh \
  type=gla \
  lr=3e-4 \
  steps=20480 \
  batch=8 \
  update=1 \
  warmup=1024 \
  context=2048 \
  path=exp/gla-340M-10B \
  project=fla \
  model=configs/gla_340M.json \
  data=HuggingFaceFW/fineweb-edu \
  name=sample-10BT \
  cache=data/HuggingFaceFW/fineweb-edu/sample-10BT/train

or for testing SCAN:

bash train.sh \
  type=scan \
  lr=3e-4 \
  steps=1000 \
  batch=8 \
  update=1 \
  warmup=100 \
  context=2048 \
  path=exp/scan-340M-test \
  project=fla \
  model=configs/scan_340M.json \
  data=alturing/gutenberg-texts \
  name=sample-10BT \
  cache=data/alturing/gutenberg-texts/train

flame also supports resuming interrupted training by specifying the checkpoint path. Simply use the following command to resume training:

bash train.sh \
  type=gla \
  lr=3e-4 \
  steps=20480 \
  batch=8 \
  update=1 \
  warmup=1024 \
  context=2048 \
  path=exp/gla-340M-10B \
  project=fla \
  model=configs/gla_340M.json \
  data=HuggingFaceFW/fineweb-edu \
  name=sample-10BT \
  cache=data/HuggingFaceFW/fineweb-edu/sample-10BT/train \
  checkpoint=exp/gla-340M-10B/checkpoint-8192

You can also use wandb to monitor your training process effectively.

wandb

Continual Pretraining

flame supports continual training from a pretrained checkpoint. Below, we provide an example of how to finetune Mistral-7B to GLA. You can follow similar steps to reproduce the results in the GSA paper:

  1. Initialize a brand-new GLA-7B model from the config and copy the mathced pretrained weights from Mistral-7B:
cd ../utils
python convert_from_llama.py \
  --model mistralai/Mistral-7B-v0.1 \
  --config ../training/configs/gla_7B.json \
  --output ../training/converted/gla-7B
cd -
  1. Directly launch training from the converted checkpoint:
bash train.sh \
  type=gla \
  lr=3e-5 \
  steps=10240 \
  batch=4 \
  update=8 \
  warmup=512 \
  context=2048 \
  path=exp/gla-7B-20B \
  project=fla \
  model=converted/gla-7B \
  data=SlimPajama-627B \
  cache=data/SlimPajama-627B/train

Please be aware that finetuning on a single node may not be the most efficient approach. If available, consider leveraging multi-node GPUs for optimal performance. You can find guidance on how to launch a multi-node job in the accelerate tutorial.

[^1]: The accelerate library supports various distributed frameworks, like deepspeed and megatron for large-scale training. We use deepspeed in our case.