zhulei777's picture
Update README.md
afacf92 verified
---
base_model: llm-jp/llm-jp-3-13b
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** zhulei777
- **License:** apache-2.0
- **Finetuned from model :** llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
USE MODEL
# 推論用コード
Hugging Faceにアップロードしたモデルを用いてELYZA-tasks-100-TVの出力を得るためのコードです。
このコードはunslothライブラリを用いてモデルを読み込み、推論するためのコードとなります。
このコードで生成されたjsonlファイルは課題の成果として提出可能なフォーマットになっております。
"""
# Commented out IPython magic to ensure Python compatibility.
# %%capture
# !pip install unsloth
# !pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
from unsloth import FastLanguageModel
import torch
import json
model_name = "zhulei777/llm-jp-3-13b-finetune-zhu6"
max_seq_length = 2048
dtype = None
load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = model_name,
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
token = "your token",
)
FastLanguageModel.for_inference(model)
# データセットの読み込み。
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
try:
datasets.append(json.loads(item))
item = ""
except json.JSONDecodeError as e:
print(f"Error decoding JSON on line: {line}")
print(f"Error message: {e}")
from tqdm import tqdm
# 推論
results = []
for dt in tqdm(datasets):
input = dt["input"]
prompt = f"""### 指示\n{input}\n### 回答\n"""
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
with open(f"./llm-jp-3-13b-finetune-zhu6_output.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')